scholarly journals In Vivo HSC Gene Therapy with Base Editors Allows for Efficient Reactivation of Fetal Globin in Beta-Yac Mice

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Chang Li ◽  
Afrodite Georgakopoulou ◽  
Sucheol Gil ◽  
Andre Lieber

Base editors are capable of installing precise nucleotide mutations at targeted genomic loci and present the advantage of avoiding double-stranded DNA breaks. Here, we aimed to target critical motifs regulating gamma-globin reactivation with base editors delivered via HDAd5/35++ vectors. Through optimized design, we successfully rescued a panel of cytidine and adenine base editors (CBE and ABE) targeting the BCL11A enhancer or recreating naturally occurring Hereditary Persistence of Fetal Hemoglobin (HPFH) mutations in the HBG1/2 promoter. In HUDEP-2 cells, all five tested vectors efficiently installed target base conversion and led to gamma-globin reactivation. We observed significant gamma-globin protein production (~23% over β-globin) by using an ABE vector HDAd-ABE-sgHBG#2 specific to the -113A to G HPFH mutation in HBG1/2 promoter. This vector was therefore chosen for downstream in vivo hematopoietic progenitor/stem cell (HSPC) transduction studies in mice that carry 248kb of the human β-globin locus (β-YAC mice) and thus accurately reflect globin switching. An EF1a-mgmtP140K expression cassette flanked by frt and transposon sites was included in the vector for allowing in vivo selection of transduced cells. After in vivo HSPC transduction with HDAd-ABE-HBG#2 + HDAd-SB and low doses of chemoselection, an average of over 40% HbF-positive cells in peripheral red blood cells was measured. This corresponded to ~21% gamma-globin production over human β-globin. The -113 A to G conversion in total bone marrow cells was on average 20%. Compared to untransduced mice, no alterations in hematological parameters, erythropoiesis and bone marrow cellular composition were observed after treatment, demonstrating a good safety profile of our approach. No detectable editing was found at top-scored potential off-target genomic sites. Bone marrow lineage-negative cells, isolated from primary mice at week 16 after transduction, were capable of reconstituting secondary transplanted mice with stable HbF expression. Importantly, the advantage of base editing over CRISPR/Cas9 was reflected by the markedly lower rates of intergenic 4.9kb deletion and no detectable toxicity in human CD34+ stem cells. Our observations demonstrate that base editors delivered by HDAd5/35++ vectors represent a promising strategy for precise in vivo genome engineering for the treatment of hemoglobinopathies. Disclosures Lieber: Ensoma, Inc: Consultancy, Research Funding.

2021 ◽  
Vol 5 (4) ◽  
pp. 1122-1135 ◽  
Author(s):  
Chang Li ◽  
Aphrodite Georgakopoulou ◽  
Arpit Mishra ◽  
Sucheol Gil ◽  
R. David Hawkins ◽  
...  

Abstract Base editors are capable of installing precise genomic alterations without creating double-strand DNA breaks. In this study, we targeted critical motifs regulating γ-globin reactivation with base editors delivered via HDAd5/35++ vectors. Through optimized design, we successfully produced a panel of cytidine and adenine base editor (ABE) vectors targeting the erythroid BCL11A enhancer or recreating naturally occurring hereditary persistence of fetal hemoglobin (HPFH) mutations in the HBG1/2 promoter. All 5 tested vectors efficiently installed target base conversion and led to γ-globin reactivation in human erythroid progenitor cells. We observed ~23% γ-globin protein production over β-globin, when using an ABE vector (HDAd-ABE-sgHBG-2) specific to the –113A>G HPFH mutation. In a β-YAC mouse model, in vivo hematopoietic progenitor/stem cell (HSPC) transduction with HDAd-ABE-sgHBG-2 followed by in vivo selection resulted in >40% γ-globin+ erythrocytes in the peripheral blood. This result corresponded to 21% γ-globin production over human β-globin. The average –113A>G conversion in total bone marrow cells was 20%. No alterations in hematological parameters, erythropoiesis, and bone marrow cellular composition were observed after treatment. No detectable editing was found at top-scoring, off-target genomic sites. Bone marrow lineage–negative cells from primary mice were capable of reconstituting secondary transplant-recipient mice with stable γ-globin expression. Importantly, the advantage of base editing over CRISPR/Cas9 was reflected by the markedly lower rates of intergenic HBG1/2 deletion and the absence of detectable toxicity in human CD34+ cells. Our observations suggest that HDAd-vectorized base editors represent a promising strategy for precise in vivo genome engineering for the treatment of β-hemoglobinopathies.


1983 ◽  
Vol 3 (2) ◽  
pp. 94-96 ◽  
Author(s):  
Silvano Lamperi ◽  
Silvia Carozzi ◽  
Andrea Icardi

In order to understand the effect of CAPD on the anemia of chronic renal failure, we studied the behaviour of some hematological parameters and of the colony-formation capacity of bone marrow cells in in vitro cultures in patients undergoing this therapy. Our studies showed a rise in hematocrit, hemoglobin and reticulocyte values, which showed a significant correlation with a recovery of the erythroid cell proliferative activity. Since serum erythropoietin levels do not change, the improvement of bone-marrow function appears to be due to a better clearance (by CAPD) of substances, which inhibit the response of bone marrow to the erythropoietin.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3198-3204 ◽  
Author(s):  
G Stamatoyannopoulos ◽  
CA Blau ◽  
B Nakamoto ◽  
B Josephson ◽  
Q Li ◽  
...  

Abstract Butyrate induces fetal hemoglobin (HbF) synthesis in cultures of erythroid progenitors, in primates, and in man. The mechanism by which this compound stimulates gamma-globin synthesis is unknown. In the course of butyrate catabolism, beta oxidation by mitochondrial enzymes results in the formation of two acetate molecules from each molecule of butyrate. Studies were performed to determine whether acetate itself induces HbF synthesis. In erythroid burst-forming unit (BFU-E) cultures from normal persons, and individuals with sickle cell disease and umbilical-cord blood, dose-dependent increases in gamma-globin protein and gamma mRNA were consistently observed in response to increasing acetate concentrations. In BFU-E cultures from normal adults and patients with sickle cell disease, the ratio of gamma/gamma + beta mRNA increased twofold to fivefold in response to acetate, whereas the percentage of BFU-E progeny staining with an anti-gamma monoclonal antibody (MoAb) increased approximately twofold. Acetate-induced increases in gamma-gene expression were also noted in the progeny of umbilical cord blood BFU-E, although the magnitude of change in response to acetate was less because of a higher baseline of gamma- chain production. The effect of acetate on HbF induction in vivo was evaluated using transgenic mouse and primate models. A transgenic mouse bearing a 2.5-kb mu locus control region (mu LCR) cassette linked to a 3.3-kb A gamma gene displayed a near twofold increase in gamma mRNA during a 10-day infusion of sodium acetate at a dose of 1.5 g/kg/d. Sodium acetate administration in baboons, in doses ranging from 1.5 to 6 g/kg/d by continuous intravenous infusion, also resulted in the stimulation of gamma-globin synthesis, with the percentage of HbF- containing reticulocytes (F reticulocytes) approaching 30%. Surprisingly, a dose-response effect of acetate on HbF induction was not observed in the baboons, and HbF induction was not sustained with prolonged acetate administration. These results suggest that both two- carbon fatty acids (acetate) and four-carbon fatty acids (butyrate) stimulate synthesis of HbF in vivo.


1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


1984 ◽  
Vol 26 (2) ◽  
pp. 152-157
Author(s):  
S. M. Singh ◽  
D. L. Reimer

Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2′deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment – strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.Key words: sister chromatid exchange, BrdU, recombination, replication, X chromosome.


Blood ◽  
2013 ◽  
Vol 121 (12) ◽  
pp. e90-e97 ◽  
Author(s):  
Mark Wunderlich ◽  
Benjamin Mizukawa ◽  
Fu-Sheng Chou ◽  
Christina Sexton ◽  
Mahesh Shrestha ◽  
...  

Key Points A relevant xenograft chemotherapy model was developed by using standard AML induction therapy drugs and primary human AML patient samples. Human AML cells show significantly increased sensitivity to in vivo chemotherapy treatment compared with murine LSK and total bone marrow cells.


Sign in / Sign up

Export Citation Format

Share Document