scholarly journals BCL-Xl Driven Accumulation of Dysfunctional Mitochondria in Aged Stromal Cells Impairs the Haematopoietic Stem Cell Response to Stress

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1097-1097
Author(s):  
Charlotte Hellmich ◽  
Jayna J Mistry ◽  
Aisha Jibril ◽  
Jamie A Moore ◽  
Benjamin B Johnson ◽  
...  

Abstract The burden of infections is known to increase with age. Not only is ageing associated with greater susceptibility to infections but also an increase in subsequent morbidity and mortality. The bone marrow (BM) niche is essential for the body's response to infection. Haematopoietic stem and progenitor cells (HSPCs) heavily rely on their supporting BM microenvironment to effectively expand and differentiate in response to stress and infection (1). The role of senescent cells has been explored in a number of age-related diseases including acute myeloid leukaemia (2). Here we explore the role of senescence during natural ageing in the BM microenvironment, the mechanism which drives this and how this impacts on the metabolic health of HSPCs. BM was isolated from aged (18-24 months) and young (8-12 weeks) C57Bl/6 mice and flow cytometry was used to compare mitochondrial membrane potential (ΔΨm) and mitochondrial ROS in HSPCs. Results show that HSPCs from aged animals increase in numbers and accumulate mitochondria with low membrane potential with lower mitochondrial ROS. Next, young and aged mice were treated with lipopolycaccharide (LPS). Metabolic analysis revealed that HSPCs from young mice increase metabolism of mitochondrial TCA cycle substrates in response to LPS whereas aged HSPCs continued to rely on glycolysis. When HSPCs from aged C57Bl/6 mice (CD45.2+) were FACS purified and adoptively transferred into young PepCboy (CD45.1+) mice, thus removing them from the aged BM microenvironment, they were able to recover their mitochondrial health and showed an improved metabolic response to treatment with LPS. Furthermore, qRT-PCR analysis of p16 and p21 expression in HSPCs and mesenchymal stromal cells (MSC) showed that MSCs, but not HSPCs, acquire a senescent phenotype in aged mice, and depletion of senescent cells in the p16-3MR mouse model (3) allowed recovery of HSPC mitochondrial function and response to LPS. Mechanistically, we found a significant upregulation of the anti-apoptotic protein BCL-XL in MSCs of aged mice. This has previously been described to drive the senescent phenotype and prevent apoptosis in senescent cells. By over-expressing GFP-tagged BCL-XL in MSCs and then co-culturing them with LSKs we were able to show that BCL-XL is transferred from MSCs to HSPCs in vitro. Finally, we demonstrated that targeting BCL-XL in vivo, using the senolytic drug ABT-263, in aged mice can restore the HSPC metabolic response to stress resulting in upregulation of TCA cycle metabolism. In conclusion, we show that the aged BM microenvironment is responsible for the HSPC metabolic shortfall resulting in impaired response to stress. Targeting the senescent cells in the environment restored the HSPC metabolic function and their response to infection in aged mice. This suggests that manipulation of the ageing BM microenvironment can help to improve the body's response to infection. 1. Mistry JJ, Marlein CR, Moore JA, Hellmich C, Wojtowicz EE, Smith JGW, et al. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc Natl Acad Sci U S A. 2019;116(49):24610-9. 2. Abdul-Aziz AM, Sun Y, Hellmich C, Marlein CR, Mistry J, Forde E, et al. Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood. 2019;133(5):446-56. 3. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722-33. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 133 (5) ◽  
pp. 446-456 ◽  
Author(s):  
Amina M. Abdul-Aziz ◽  
Yu Sun ◽  
Charlotte Hellmich ◽  
Christopher R. Marlein ◽  
Jayna Mistry ◽  
...  

Abstract Acute myeloid leukemia (AML) is an age-related disease that is highly dependent on the bone marrow (BM) microenvironment. With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of proinflammatory cytokines, chemokines, and growth factors, collectively known as the senescence-associated secretory phenotype (SASP). Here, we report that AML blasts induce a senescent phenotype in the stromal cells within the BM microenvironment and that the BM stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feed back to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a+ senescent BM stromal cells in vivo improved the survival of mice with leukemia. Next, we find that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. Finally, using the p16-3MR mouse model, we show that by targeting NOX2 we reduced BM stromal cell senescence and consequently reduced AML proliferation. Together, these data identify leukemia-generated NOX2-derived superoxide as a driver of protumoral p16INK4a-dependent senescence in BM stromal cells. Our findings reveal the importance of a senescent microenvironment for the pathophysiology of leukemia. These data now open the door to investigate drugs that specifically target the “benign” senescent cells that surround and support AML.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Wang ◽  
Peng Deng ◽  
Yuting Liu ◽  
Yunshu Wu ◽  
Yaqian Chen ◽  
...  

Abstract Age-related osteoporosis is characterized by the deterioration in bone volume and strength, partly due to the dysfunction of bone marrow mesenchymal stromal/stem cells (MSCs) during aging. Alpha-ketoglutarate (αKG) is an essential intermediate in the tricarboxylic acid (TCA) cycle. Studies have revealed that αKG extends the lifespan of worms and maintains the pluripotency of embryonic stem cells (ESCs). Here, we show that the administration of αKG increases the bone mass of aged mice, attenuates age-related bone loss, and accelerates bone regeneration of aged rodents. αKG ameliorates the senescence-associated (SA) phenotypes of bone marrow MSCs derived from aged mice, as well as promoting their proliferation, colony formation, migration, and osteogenic potential. Mechanistically, αKG decreases the accumulations of H3K9me3 and H3K27me3, and subsequently upregulates BMP signaling and Nanog expression. Collectively, our findings illuminate the role of αKG in rejuvenating MSCs and ameliorating age-related osteoporosis, with a promising therapeutic potential in age-related diseases.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiyi Yao ◽  
Fenglin Li ◽  
Jiansong Huang ◽  
Jie Jin ◽  
Huafeng Wang

AbstractDespite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.


2019 ◽  
Vol 60 (8) ◽  
pp. 2042-2049
Author(s):  
Irina N. Shipounova ◽  
Nataliya A. Petinati ◽  
Alexey E. Bigildeev ◽  
Tamara V. Sorokina ◽  
Larisa A. Kuzmina ◽  
...  

2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Tao Qiu ◽  
Jiangqiao Zhou ◽  
Tianyu Wang ◽  
Zhongbao Chen ◽  
Xiaoxiong Ma ◽  
...  

AbstractAcute lung injury (ALI) is an acute inflammatory disease. Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing inhibitory receptor that is implicated in various pathological processes. However, the function of LILRB4 in ALI remains largely unknown. The aim of the present study was to explore the role of LILRB4 in ALI. LILRB4 knockout mice (LILRB4 KO) were used to construct a model of ALI. Bone marrow cell transplantation was used to identify the cell source of the LILRB4 deficiency-aggravated inflammatory response in ALI. The effect on ALI was analyzed by pathological and molecular analyses. Our results indicated that LILRB4 KO exacerbated ALI triggered by LPS. Additionally, LILRB4 deficiency can enhance lung inflammation. According to the results of our bone marrow transplant model, LILRB4 regulates the occurrence and development of ALI by bone marrow-derived macrophages (BMDMs) rather than by stromal cells in the lung. The observed inflammation was mainly due to BMDM-induced NF-κB signaling. In conclusion, our study demonstrates that LILRB4 deficiency plays a detrimental role in ALI-associated BMDM activation by prompting the NF-κB signal pathway.


Author(s):  
Daqian Wan ◽  
Songtao Ai ◽  
Huoniu Ouyang ◽  
Liming Cheng

AbstractSenile osteoporosis can cause bone fragility and increased fracture risks and has been one of the most prevalent and severe diseases affecting the elderly population. Bone formation depends on the proper osteogenic differentiation of bone marrow stromal cells (BMSCs) in the bone marrow microenvironment, which is generated by the functional relationship among different cell types in the bone marrow. With aging, bone marrow provides signals that repress osteogenesis. Finding the signals that oppose BMSC osteogenic differentiation from the bone marrow microenvironment and identifying the abnormal changes in BMSCs with aging are key to elucidating the mechanisms of senile osteoporosis. In a pilot experiment, we found that 4-1BBL and 4-1BB were more abundant in bone marrow from aged (18-month-old) mice than young (6-month-old) mice. Meanwhile, significant bone loss was observed in aged mice compared with young mice. However, very little data have been generated regarding whether high-level 4-1BB/4-1BBL in bone marrow was associated with bone loss in aged mice. In the current study, we found upregulation of 4-1BB in the BMSCs of aged mice, which resulted in the attenuation of the osteogenic differentiation potential of BMSCs from aged mice via the p38 MAPK-Dkk1 pathway. More importantly, bone loss of aged mice could be rescued through the blockade of 4-1BB signaling in vivo. Our study will benefit not only our understanding of the pathogenesis of age-related trabecular bone loss but also the search for new targets to treat senile osteoporosis.


2015 ◽  
Vol 39 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Bing Xia ◽  
Chen Tian ◽  
Shanqi Guo ◽  
Le Zhang ◽  
Dandan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document