scholarly journals Pparα Ablation Suppresses T Cell Responses and Anti-Tumor Immunity By Compromising the Antigen-Presenting Properties of Tumor-Associated Macrophages

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 438-438
Author(s):  
Anthos Christofides ◽  
Carol Cao ◽  
Qi Wang ◽  
Natalia M Tijaro-Ovalle ◽  
Eirini Konstantinidou ◽  
...  

Abstract Peroxisome proliferator activated receptors (PPARs) are transcription factors that belong to nuclear hormone superfamily, with three distinct types identified: PPARapha (PPARα), PPARgamma (PPARγ), and PPARbeta/delta (PPARβ/δ). PPARs possess a critical role in the regulation of lipid metabolism, and thus play critical roles in the differentiation and fate of immune cells. PPARα is involved in lipid and carbohydrate metabolism and PPARα agonists, such as fibrates, have been used for the treatment of hypertriglyceridemia and cardiovascular diseases. PPARα has an anti-inflammatory role during infection, and similar to PPARγ, affects the polarization of macrophages. In acute myelogenous leukemia (AML), PPARα mutations correlate with chemoresistance, poor treatment outcomes and unfavorable prognosis. In experimental tumor models, it has been proposed that PPARα agonists might enhance anti-tumor T cell responses during PD-1 blocking immunotherapy. To dissect the mechanistic role of PPARα in tumor immunity, we used mice with global deletion of PPARα and examined tumor growth and profile of the immunological landscape, using various syngeneic tumor models. Significantly larger B16-F10 melanoma and MC-17 fibrosarcoma tumors were observed in PPARα KO mice compared with wild-type control, suggesting that PPARα deletion attenuated the immunological response against cancer. To dissect the role of PPARα in key populations of the innate and adaptive immune system involved in anti-tumor responses, we analyzed the immunological landscape of tumor, tumor draining lymph nodes (TDLN) and spleen, 14-16 days after tumor implantation. Assessment of CD4 + and CD8 + T cells, CD11b +F4/80 + tumor-associated macrophages (TAMs), CD11b +Ly6C hiLy6G - monocytic myeloid derived suppressor cells (M-MDSC), and CD11b +Ly6C loLy6G + polymorphonuclear myeloid derived suppressor cells (PMN-MDSC), by using flow cytometry, showed no quantitative differences between the two experimental groups. Functionally, MDSC from PPARα KO and WT mice showed comparable immunosuppressive properties as determined by suppression assay using splenocytes from OTI transgenic mice. However, PPARα KO TAMs demonstrated a less activated state, as determined by the lower expression levels of MHC-II that is critical for antigen presentation, and CD86 that is critical for T cell costimulation and prevention of T cell anergy and exhaustion. In agreement with these properties of TAMs, CD4 + T cells from TDLN of PPARα KO mice had diminished expression of activation markers, including PD-1, PD-L1 and ICOS, and numerically decreased central memory-like CD4 + T cells (T CM), compared to control tumor bearing mice. Furthermore, CD69, an emerging marker of T cell exhaustion, was significantly upregulated in CD4 + and CD8 + T cells from the TDLN of PPARα KO mice. To determine whether PPARα ablation altered the cell intrinsic properties of myeloid cells and/or T cells resulting in impaired anti-tumor function, we examined in vitro responses of isolated populations. In response to activation via TCR/CD3 and CD28, PPARα deficient T cells had no significant differences in expansion and cytokine production compared to control. In contrast, PPARα deficient Ly6C + monocytes isolated from the bone marrow displayed diminished responses to TLR-mediated signaling as determined by production of IL-6 and TNFα. Our in vitro and in vivo findings reveal a dominant role of PPARα in regulating the fate of innate immune cells thereby altering T cell responses and anti-tumor function. Our findings have implications for the development of new therapeutic approaches to enhance innate immune cell function for the improvement of cancer immunotherapy. Disclosures No relevant conflicts of interest to declare.

Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 377-377 ◽  
Author(s):  
Daniel J Hui ◽  
Gary C Pien ◽  
Etiena Basner-Tschakarjan ◽  
Federico Mingozzi ◽  
Jonathan D Finn ◽  
...  

Abstract Abstract 377 Hemophilia B represents a promising model for the development of adeno-associated viral (AAV) vectors-based gene therapeutics. In the first clinical trial for AAV serotype 2 mediated gene transfer of Factor IX (F.IX) to the liver of severe hemophilia B subjects, transgene expression was short-lived with a gradual decline of F.IX levels. The loss of transgene expression was accompanied by a transient transaminitis, which we hypothesized to be the result of the reactivation of a pool of capsid-specific memory CD8+ T cells originated from a previous exposure to wild-type AAV. These results were unanticipated since previous work in small and large animal models showed that AAV administration is uneventful, allowing prolonged expression of F.IX transgene at therapeutic levels. We developed an in vitro cytotoxicity assay using a human hepatocyte cell line expressing HLA-B*0702, a common MHC class I allele for which the AAV capsid immunodominant epitope VPQYGYLTL was identified. Using this model, we demonstrated that HLA-matched AAV-specific effector CD8+ T cells were able to lyse target hepatocytes transduced with AAV-2. We now use this in vitro model of CTL killing of AAV-transduced hepatocytes to demonstrate the efficacy of a novel strategy to circumvent undesirable immune response through the engagement of regulatory T cells. A recently characterized MHC Class II-restricted T cell epitope (Tregitope) in the Fc fragment of IgG has been shown to induce regulatory T cells in vitro and in vivo (Blood, 2008; 112: 3303-3311). AAV-specific HLA-B*0702 effector cells expanded in the presence of a human Tregitope peptide resulted in 79% to 89% inhibition of cytotoxic activity against peptide-pulsed and AAV-transduced target cells, respectively. These results were confirmed using PBMCs from 5 different donors. A similar degree of inhibition of CTL activity was observed for the HLA allele A*0101, which binds to the AAV-derived epitope SADNNNSEY; co-culture of effector cells with the Tregitope inhibited CTL-mediated killing by 60%. Interestingly, the same Tregitope efficiently mediated suppression of CTL activity in subjects carrying different HLA alleles, indicating a high level of promiscuity of Tregitope binding. Staining for the regulatory T cell markers CD4, CD25, and FoxP3 supported the hypothesis that Tregitopes suppress T cell responses by expanding regulatory T cells; 62.2% of the CD4+ population stained positive for CD25 and FoxP3 in PBMCs expanded against AAV epitopes in the presence of Tregitope, compared with PBMCs expanded against an AAV epitope alone (3.63%), or against an AAV epitope and an irrelevant control peptide (1.94%). Polyfunctional analysis for markers for T cell activation showed that CD8+ T cells incubated in the presence of Tregitope had an approximately 5-fold decrease in production of IL-2 and IFN-γand a 2-fold reduction in TNF-α production, indicating levels of activation close to naïve CD8+ T cells. We further characterized the mechanism of action of Tregitopes by showing that Tregitopes are required at the time of CD8+ T cell priming, as CTL activity of AAV-expanded CD8+ T cells against transduced hepatocytes was not inhibited by the CD4+ T cell fraction of PBMC expanded separately in vitro with Tregitopes only. We conclude that the use of Tregitopes represents a promising strategy for antigen-specific, Treg-mediated modulation of capsid-specific T cell responses. Disclosures: Martin: EpiVax: Employment. De Groot:EpiVax, Inc.: Employment, Equity Ownership.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 162-162
Author(s):  
Emmanuel S. Antonarakis ◽  
David I. Quinn ◽  
Adam S. Kibel ◽  
Daniel Peter Petrylak ◽  
Tuyen Vu ◽  
...  

162 Background: Sip-T is an FDA-approved immunotherapy for patients (pts) with asymptomatic or minimally symptomatic metastatic CRPC. Sip-T is manufactured from autologous peripheral blood mononuclear cells cultured with the immunogen PA2024, a fusion antigen of prostatic acid phosphatase (PAP) conjugated to granulocyte macrophage colony-stimulating factor. After sip-T, antibody and T cell responses to PA2024 and/or PAP correlate with improved survival. To further elucidate the mechanism of sip-T–induced immune responses, we evaluated the proliferative and lytic ability of PA2024- and PAP-specific CD8+ T cells. Methods: Mononuclear blood cells were labeled with the membrane dye carboxyfluorescein succinimidyl ester (CFSE) and cultured with PA2024 or PAP. In vitro proliferative and lytic CD8+ (cytotoxic T lymphocyte [CTL]) T cell responses to these antigens were evaluated by flow cytometry. For proliferation, progressive dilution of CFSE was measured. For CTL activity, the loss of intracellular granzyme B (GzB), indicating exocytosis of this apoptosis-mediating enzyme, was assessed. Samples were from 2 sip-T clinical trials STAND (NCT01431391) and STRIDE (NCT01981122), hormone-sensitive and CRPC pts, respectively. Results: Six wk after sip-T administration, CD8+ PAP- and PA2024-specific responses were observed (n=14 pts assessed). The magnitude of PA2024-specific CD8+ proliferative responses was greater than that for PAP-specific responses. CD8+ T cells from a subset of pts who exhibited PA2024- and/or PAP-specific proliferative responses were assessed for lytic ability. After in vitro antigen stimulation, CTL activity in all evaluated samples (n=14, PA2024; n=13, PAP) was demonstrated by a significant decrease (p<0.05) in intracellular GzB relative to a no-antigen control. Conclusions: Sip-T induced CD8+ CTL proliferation against the target antigens PAP and PA2024. Moreover, antigen-specific CTL activity provides the first direct evidence that sip-T can induce tumor cell lysis. These antigen-specific CD8+ lytic abilities were observed within 6 wk following sip-T, suggesting rapidly generated immune responses. Clinical trial information: NCT01431391; NCT01981122.


Blood ◽  
2014 ◽  
Vol 124 (5) ◽  
pp. 750-760 ◽  
Author(s):  
Regina Jitschin ◽  
Martina Braun ◽  
Maike Büttner ◽  
Katja Dettmer-Wilde ◽  
Juliane Bricks ◽  
...  

Key Points Monocytic IDOhi MDSCs are increased in CLL patients, suppress T cells, and promote TReg induction. CLL cells induce conversion of monocytes into MDSCs suggesting bidirectional crosstalk between CLL cells, MDSCs, and TRegs.


2010 ◽  
Vol 84 (11) ◽  
pp. 5540-5549 ◽  
Author(s):  
B. Julg ◽  
K. L. Williams ◽  
S. Reddy ◽  
K. Bishop ◽  
Y. Qi ◽  
...  

ABSTRACT Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2794-2794
Author(s):  
Els Van Valckenborgh ◽  
Jo Van Ginderachter ◽  
Kiavash Movahedi ◽  
Eline Menu ◽  
Karin Vanderkerken

Abstract Abstract 2794 Poster Board II-770 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous mix of myeloid cells in different maturation stages generated in the bone marrow. The role of MDSCs in cancer is to suppress T-cell responses, thereby likely regulating tumor progression. In mice, MDSCs are identified by the expression of the surface markers CD11b and Gr-1. Recently, Ly6G+ granulocytic (PMN-MDSC) and Ly6G− monocytic (MO-MDSC) subsets could be distinguished (Movahedi et al. Blood 2008, 111:4233-44). In multiple myeloma patients, the immune function is impaired and this is caused by an immunologically hostile microenvironment and cellular defects, such as decreased numbers of immune cells, and DC or T-cell dysfunction. However, the role of MDSCs in immune suppression in multiple myeloma is not yet described. In this study, we investigated the immunosuppressive activity and mechanism of MDSC subsets in the syngeneic and immunocompetent 5TMM mouse model (5T2 and 5T33 models). In first instance, CD11b+Ly6G− and CD11b+Ly6G+ lineage-committed myeloid MDSC subsets were detected in 5TMM-diseased bone marrow by flow cytometry. These subsets were purified via MACS from the bone marrow of naïve and 5TMM tumor-bearing mice, and analyzed for T-cell suppressive activity. Hereto, CD8+ TCR-transgenic OT-1 splenocytes were stimulated with ovalbumin protein in the presence of purified MDSC subsets, after which T-cell proliferation was measured via 3H-thymidine incorporation. Both MDSC subsets from 5TMM bone marrow were able to suppress antigen-specific T-cell responses at a higher level compared to purified MDSC subsets from normal bone marrow. On average, Ly6G− MDSCs were more suppressive than Ly6G+ MDSCs. The 5T2MM model has a tumor take of approximately 12 weeks. Three weeks after intravenous inoculation of the tumor cells, the suppressive effect of the myeloid subsets was already observed (while the plasmacytosis in the BM was very low and no detectable serum M spike was observed), indicating that T-cell suppression is an early event in MM development. To unravel the suppressive mechanism of the MDSC subsets, inhibitors were used in ovalbumin-stimulated cocultures. Ly6G− MDSC-mediated suppression was partially reversed by the iNOS inhibitor L-NMMA and the COX-2 inhibitor sc-791, both of which lower the NO concentration in culture. In contrast, superoxide dismutase and especially catalase enhance NO concentrations, resulting in enhanced T-cell suppression. None of these inhibitors had any impact on the Ly6G+ MDSC-mediated suppression. In conclusion, these data reveal the presence of MDSCs as a novel immune suppressive strategy employed by multiple myeloma cells in the bone marrow, already occurring early in the disease process. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 229-229 ◽  
Author(s):  
Tomomi Toubai ◽  
Corinne Rossi ◽  
Katherine Oravecz-Wilson ◽  
Nathan Mathewson ◽  
Cynthia Zajac ◽  
...  

Abstract Innate immune receptors like pattern recognition receptors (PRRs) including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) like-receptors (NLR) on immune cells play an important role in initiating inflammatory responses to damage- and pathogen- associated molecular patterns (DAMPs and PAMPs) expressed on invading pathogens or released from damaged cells. Although it is well known that DAMPs directly modulate innate immune functions, it is less clear whether DAMPs directly regulate T cell intrinsic function. Members of the sialic acid binding Ig-like lectin (Siglec) family have immunoreceptor tyrosine-based inhibitory motifs (ITIM) or ITIM-like regions in their intracellular domain that negatively regulate immune activation induced by DAMPs. Our previous data suggested that the Siglec- G-CD24 interaction in host APCs plays an important role in the negative regulation of graft-versus host (GVH) responses. However, the T cell autonomous role of Siglec-G in the regulation of T cell responses is not known. Because Siglecs are important negative regulators of immune responses, we tested the hypothesis that the deficiency of Siglec-G in donor T cells would enhance GVHD. To test our hypothesis, we first examined detailed phenotypic analysis of various T cell subsets and activation markers in naïve Siglec-G-/- and wild-type (WT) B6 animals and found similar distribution of naïve, memory, effector and regulatory T cells. In order to examine whether the absence of Siglec-G in donors affects GVHD, WT-BALB/cmice were lethally irradiated (850cGy) and transplanted on day 0 with 5x106 bone marrow and 0.5x106 splenic CD90+ T cells from either syngeneic WT-BALB/c, allogeneic MHC-mismatched WT-B6 or Siglec-G-/- animals. The recipients receiving donor T cells from Siglec-G-/- animals showed a significantly worse survival compared to allogeneic WT-B6 animals (p<0.05). This increased mortality was also associated with more severe GVHD damage in target organs and a higher expansion of activated CD69+, IFN-r+, and IL-17A+ donor T cells in the spleen and target organs. Enhanced GVHD mortality and severity was also observed in MHC mismatched haploidentical matched B6 in to F1models (p<0.05). To explore the mechanism, we tested whether Siglec-G deficiency alters the naïve T cell responses in vitro after allogeneic or non-specific TCR stimulation in the absence of exogenous DAMPs. Interestingly Siglec-G-/- T cells showed similar proliferation in vitro, when compared to WT B6 T cells. In addition, Siglec-G-/- Tregs are equally suppressive in suppression assay and Siglec-G-/- T cells showed severe GVHD even Tregs are depleted in allo-BMT. However, Siglec-G-/- T cells showed a higher proliferation after direct TCR stimulation (CD3/CD28) with addition of DAMP (HMGB-1) when compared to WT T cells in vitro, suggesting direct T cell intrinsic effects. Consistent with this result, allogeneic Siglec-G-/- T cells caused similar mortality compared to WT controls in non-irradiated B6 into F1 model due to the absence of DAMPs from conditioning. To test the critical cellular mechanisms, we examined the function of endogenous Siglec-G ligand, CD24. We utilized BALB/c CD24-/- animals as hosts in same BMT model and found that CD24-/- animals showed an enhanced GVHD mortality and severity when compared to WT animals (p<0.05). To enhance Siglec-G-CD24 axis, we utilized a novel CD24 fusion protein (CD24Fc) in same BMT model and found that CD24 Fc ameliorated GVHD severity and mortality in not only allogeneic WT-B6 animals (p<0.05) but also CD24-/- animals (p<0.05). Next we explored DAMPs regulation by Siglec-G-CD24 axis in GVL. We utilized the same model of CD24Fc treatment but added P815 at the same time of allo-BMT and found that CD24Fc treated animals showed equivalent GVL to non-treated animals, suggesting that regulation of DAMPs with CD24Fc mitigates GVHD with maintaining GVL effect. Collectively our data suggested that the expression of both Siglec-G on donor T cells and CD24 on hosts is critical for controlling GVHD in the context of DAMPs released from conditioning, and represents a novel strategy that CD24Fc can mitigates GVHD with maintaining GVL. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document