scholarly journals Base Editing-Mediated Dissection of the -200 Region of the γ-Globin Promoters to Induce Fetal Hemoglobin and Rescue Sickle Cell Disease and β-Thalassemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 562-562
Author(s):  
Panagiotis Antoniou ◽  
Giulia Hardouin ◽  
Pierre Martinucci ◽  
Tristan Felix ◽  
Letizia Fontana ◽  
...  

Abstract β-hemoglobinopathies are caused by mutations affecting the adult hemoglobin production. In sickle cell disease (SCD), the β6 Glu→Val substitution leads to sickle hemoglobin (HbS) polymerization and red blood cell (RBC) sickling. In β-thalassemia, reduced β-globin production leads to precipitation of uncoupled α-chains causing ineffective erythropoiesis and the production of poorly hemoglobinized RBCs. Transplantation of autologous, genetically modified hematopoietic stem/progenitor cells (HSPCs) is an attractive therapeutic option. The clinical severity of β-hemoglobinopathies is alleviated by the co-inheritance of mutations causing hereditary persistence of fetal Hb (HPFH). HPFH mutations clustering 200 nucleotides upstream of the TSS of the fetal γ-globin (HBG) genes either disrupt the binding site (BS) of the fetal Hb (HbF) repressor LRF or generate a de novo BS for the KLF1 activator. To reactivate γ-globin expression, nuclease-based approaches have been explored. However, nucleases generate double-strand breaks (DSBs), raising safety concerns for clinical applications. Base editing (BE) allows the introduction of point mutations without generating DSBs. In this study, we designed BE systems to introduce a variety of HPFH or HPFH-like mutations in the -200 region of the HBG promoters. First, we screened in erythroid cell lines known and novel BEs, and we selected combinations of BEs and guide RNAs that edit alternative bases of the -200 region. We then developed a clinically-relevant protocol based on RNA-transfection to deliver the BE system to HSPCs. The expression profile of genes activated by RNA stimuli revealed no immune response in HSPCs. A progenitor assay indicated no alteration in the growth and multilineage differentiation of edited HSPCs. We applied this protocol to SCD and β-thalassemia HSPCs, achieving editing efficiencies up to ~70% of the HBG promoters. In RBCs differentiated from edited SCD HSPCs, RT-qPCR, HPLC and flow cytometry showed a potent γ-globin reactivation with a high frequency of HbF + cells and a concomitant decrease in the HbS content/cell. Importantly, the pathological RBC sickling phenotype was corrected in the samples derived from edited HSPCs. Similarly, in β-thalassemia samples, RT-qPCR and HPLC analyses showed strong γ-globin induction and decrease of the α-globin precipitates. HbF expression rescued the delay in erythroid differentiation and ineffective erythropoiesis characterizing β-thalassemia, as demonstrated by the increased RBC enucleation rate and the reduced apoptosis and oxidative stress. We then compared BE strategies that either disrupt the LRF BS or create a de novo KLF1 BS in single colonies derived from erythroid progenitors. Generation of the KLF1 BS was associated with higher levels of HbF compared to the LRF BS disruption. These results suggest that eviction of the LRF repressor is sufficient to reactivate HBG genes, but recruitment of an activator is more effective to achieve high levels of gene expression. HbF expression induced by both LRF BS disruption and KLF1 BS generation was sufficient to rescue the SCD cell phenotype, but higher HbF levels - achieved only through KLF1 BS generation - were necessary to fully correct the β-thalassemia phenotype. In the majority of cases, we detected no DSB-induced insertions, deletions, or large genomic rearrangements in base-edited samples. Accordingly, DSB-induced DNA damage response (DDR) was absent in base-edited HSPCs, as measured by evaluating the expression of p21, a readout of p53-induced DDR. DNA off-target activity was assessed by GUIDE-seq and targeted sequencing of the potential off-target sites in edited HSPCs, while RNA off-target activity was evaluated by RNA-seq in HSPCs. Finally, BE-treated HSPCs were transplanted in immunodeficient mice to evaluate the engraftment and differentiation capability of edited HSCs. We detected good frequencies of human cells with up to ~60% of edited promoters in the peripheral blood of transplanted mice. In conclusion, we developed a clinically-relevant strategy to perform efficient BE in the HBG promoters that led to therapeutically-relevant HbF levels and rescued both the SCD and β-thalassemia phenotypes, thus providing sufficient proof of efficacy and safety to enable the clinical development of base-edited HSPCs for the therapy of β-hemoglobinopathies. Disclosures El Nemer: Hemanext: Consultancy.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-22
Author(s):  
Thiyagaraj Mayuranathan ◽  
Jonathan S. Yen ◽  
Gregory A. Newby ◽  
Yu Yao ◽  
Shaina N. Porter ◽  
...  

Rare variants in the γ-globin (HBG2 and HBG1) promoters cause sustained postnatal expression of fetal hemoglobin (HbF, α2γ2) in red blood cells (RBCs). This benign condition is termed hereditary persistence of fetal hemoglobin (HPFH). Individuals with HPFH variants are protected from β-hemoglobinopathies including sickle cell disease and β-thalassemia. Our group and others have used CRIPSR/Cas9-mediated non-homologous end joining to generate HPFH-like insertion-deletion (indel) mutations in the γ-globin promoter. However, simultaneous double-stranded breaks (DSBs) in the tandem duplicated γ-globin genes can result in loss or inversion of the intervening genetic material and/or chromosomal rearrangements. More generally, Cas9-associated DSBs can elicit a cytotoxic DNA repair response leading to cell death or evoke p53 loss with malignant transformation. Base editor (BE) proteins represent a promising approach to install precise nucleotide substitutions without DSBs. Adenosine base editors (ABEs), consisting of catalytically impaired Cas9 fused to a modified adenosine deaminase, create targeted A:T-to-G:C mutations. Here we describe the use of ABEs to recapitulate naturally occurring HPFH variants in hematopoietic stem cells (HSCs). We electroporated ABE7.10-single guide (sg) RNA ribonucleoprotein (RNP) complex into mobilized peripheral blood CD34+ hematopoietic stem and progenitor cells (HSPCs) to recreate 3 different HPFH variants in the HBG1/2 promoters (-198 T>C, -175 T>C and -113 A>G). Measured editing frequency was maximal on day 10 after electroporation and transferred to erythroid differentiation media. 20% editing efficiency was observed for the -198 site, 58% for -175 and 50% for -113. Indel frequencies were <2% at each of the three sites, reflecting a low rate of DSBs. Fetal hemoglobin levels in erythroid cells generated in vitro from A base-edited CD34+ HSPCs were 26±4% (-198 T>C), 60±10% (-175 T>C), and 42±7% (-113 A>G) versus14±2% in unedited control cells. Base editing at the -175 site in sickle cell disease (SCD) donor CD34+ HSPCs resulted in the induction of HbF to 55% in erythroid progeny compared to 6% in controls. After exposure to hypoxia (2% oxygen), reticulocytes generated from -175 T>C-edited CD34+ HSPCs exhibited sickling rates of 24%, compared to 52% in controls. Thus, creation of this variant, which generates a de novo binding site for the transcriptional activator TAL1, reactivates erythroid cell HbF to levels that inhibit sickle hemoglobin polymerization and cell sickling. To assess base editing in HSCs, we used ABE RNP to modify the -175 site in SCD donor CD34+ HSPCs, followed by transplantation into NBSGW mice. The editing frequency in CD34+ HSPCs before transplantation was ~30% and declined to approximately 20% in bone marrow-repopulating donor cells at 16 weeks post-transplantation. Editing frequencies were similar in CD34+ donor cell-derived myeloid, erythroid, and B cells, indicating that hematopoietic differentiation was not altered. Bone marrow erythroblasts derived from base-edited and control CD34+ HSPCs exhibited similar maturation profiles and enucleation. Erythroblasts generated in vivo from SCD patient HSPCs exhibited 32±2% HbF compared to unedited controls (4±1%) (n=4, P>0.0001). Our studies provide proof of concept that adenosine base editors can be used therapeutically for β-hemoglobinopathies. Specifically, generation of the -175 T>C HPFH mutation in patient HSCs followed by autologous transplantation represents a new therapeutic approach for SCD and β-thalassemia. Disclosures Yen: Beam Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months. Sharma:Spotlight Therapeutics: Consultancy; Magenta Therapeutics: Other: Research Collaboration; CRISPR Therapeutics, Vertex Pharmaceuticals, Novartis: Other: Clinical Trial PI. Liu:Pairwise Plants: Consultancy, Patents & Royalties; Editas Medicine: Consultancy, Patents & Royalties; Beam Therapeutics: Consultancy, Patents & Royalties; Prime Medicine: Consultancy, Patents & Royalties. Weiss:Beam Therapeuticcs: Consultancy, Current equity holder in private company; Esperion Therapeutics: Consultancy, Current equity holder in private company; Novartis: Consultancy, Current equity holder in private company; Cellarity Inc.: Consultancy, Current equity holder in private company; Rubius Inc.: Consultancy, Current equity holder in private company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Yuanbin Song ◽  
Rana Gbyli ◽  
Liang Shan ◽  
Wei Liu ◽  
Yimeng Gao ◽  
...  

In vivo models of human erythropoiesis with generation of circulating mature human red blood cells (huRBC) have remained elusive, limiting studies of primary human red cell disorders. In our prior study, we have generated the first combined cytokine-liver humanized immunodeficient mouse model (huHepMISTRG-Fah) with fully mature, circulating huRBC when engrafted with human CD34+ hematopoietic stem and progenitor cells (HSPCs)1. Here we present for the first time a humanized mouse model of human sickle cell disease (SCD) which replicates the hallmark pathophysiologic finding of vaso-occlusion in mice engrafted with primary patient-derived SCD HSPCs. SCD is an inherited blood disorder caused by a single point mutation in the beta-globin gene. Murine models of SCD exclusively express human globins in mouse red blood cells in the background of murine globin knockouts2 which exclusively contain murine erythropoiesis and red cells and thus fail to capture the heterogeneity encountered in patients. To determine whether enhanced erythropoiesis and most importantly circulating huRBC in engrafted huHepMISTRG-Fah mice would be sufficient to replicate the pathophysiology of SCD, we engrafted it with adult SCD BM CD34+ cells as well as age-matched control BM CD34+ cells. Overall huCD45+ and erythroid engraftment in BM (Fig. a, b) and PB (Fig. c, d) were similar between control or SCD. Using multispectral imaging flow cytometry, we observed sickling huRBCs (7-11 sickling huRBCs/ 100 huRBCs) in the PB of SCD (Fig. e) but not in control CD34+ (Fig. f) engrafted mice. To determine whether circulating huRBC would result in vaso-occlusion and associated findings in SCD engrafted huHepMISTRG-Fah mice, we evaluated histological sections of lung, liver, spleen, and kidney from control and SCD CD34+ engrafted mice. SCD CD34+ engrafted mice lungs showed an increase in alveolar macrophages (arrowheads) associated with alveolar hemorrhage and thrombosis (arrows) but not observed control engrafted mice (Fig. g). Spleens of SCD engrafted mice showed erythroid precursor expansion, sickled erythrocytes in the sinusoids (arrowheads), and vascular occlusion and thrombosis (arrows) (Fig. h). Liver architecture was disrupted in SCD engrafted mice with RBCs in sinusoids and microvascular thromboses (Fig. i). Congestion of capillary loops and peritubular capillaries and glomeruli engorged with sickled RBCs was evident in kidneys (Fig. j) of SCD but not control CD34+ engrafted mice. SCD is characterized by ineffective erythropoiesis due to structural abnormalities in erythroid precursors3. As a functional structural unit, erythroblastic islands (EBIs) represent a specialized niche for erythropoiesis, where a central macrophage is surrounded by developing erythroblasts of varying differentiation states4. In our study, both SCD (Fig. k) and control (Fig. l) CD34+ engrafted mice exhibited EBIs with huCD169+ huCD14+ central macrophages surrounded by varying stages of huCD235a+ erythroid progenitors, including enucleated huRBCs (arrows). This implies that huHepMISTRG-Fah mice have the capability to generate human EBIs in vivo and thus represent a valuable tool to not only study the effects of mature RBC but also to elucidate mechanisms of ineffective erythropoiesis in SCD and other red cell disorders. In conclusion, we successfully engrafted adult SCD patient BM derived CD34+ cells in huHepMISTRG-Fah mice and detected circulating, sickling huRBCs in the mouse PB. We observed pathological changes in the lung, spleen, liver and kidney, which are comparable to what is seen in the established SCD mouse models and in patients. In addition, huHepMISTRG-Fah mice offer the opportunity to study the role of the central macrophage in human erythropoiesis in health and disease in an immunologically advantageous context. This novel mouse model could therefore serve to open novel avenues for therapeutic advances in SCD. Reference 1. Song Y, Shan L, Gybli R, et. al. In Vivo reconstruction of Human Erythropoiesis with Circulating Mature Human RBCs in Humanized Liver Mistrg Mice. Blood. 2019;134:338. 2. Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997;278(5339):873-876. 3. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459. 4. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23-53. Disclosures Xu: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Flavell:Zai labs: Consultancy; GSK: Consultancy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 786-786
Author(s):  
Paola Sebastiani ◽  
Vikki G. Nolan ◽  
Clinton T. Baldwin ◽  
Maria M. Abad-Grau ◽  
Ling Wang ◽  
...  

Abstract A single point mutation in the β hemoglobin gene causes sickle cell disease (SCD), but patients have extremely variable phenotypes. Hemolysis-related complications include pulmonary hypertension (PHT), priapism, stroke and leg ulceration; blood viscosity and sickle vasoocclusion are associated with painful episodes, acute chest syndrome and osteonecrosis. Predicting who is at highest risk of death would be useful therapeutically and prognostically. Applying Bayesian network modeling that describes complex interactions among many variables by factorizing their joint probability distribution into modules, to data from 3380 SCD patients, we constructed a disease severity score (DSS: 0, least severe; 1, most severe), defining severity as risk of death within 5 years. A network of 24 variables described complex associations among clinical and laboratory complications of SCD. The analysis was validated in 140 patients whose SCD severity was assessed by expert clinicians and 210 adults where severity was also assessed by the echocardiographic diagnosis of PHT and death. Information about PHT allowed a comparison of the DSS with the tricuspid regurgitant jet velocity (TRJV), an objective marker of PHT and an independent risk factor for death. DSS and three indices of clinical severity (severity ranking of individuals by expert clinicians; objective measurement of the presence and severity of PHT; risk of prospective death) were correlated. Among living subjects, the median score was 0.57 in 135 patients without PHT, 0.64 in 40 patients with mild PHT and 0.86 in 15 patients with severe PHT. The difference in average score between living patients with and without PHT is significant. The same increasing trend was noticeable in the subjects who died during follow-up: 0.60 in subjects without PHT; 0.68 in subjects with mild PHT; 0.79 in subjects with severe PHT. The utility of the DSS is also supported by the ability to assign a score to subjects for whom the TRJV cannot be measured. Surprisingly, besides known risk factors like renal insufficiency and leukocytosis, we identified the intensity of hemolytic anemia and clinical events associated with hemolytic anemia as contributing to risk for death. Priapism, an excellent reflection of the hemolytic anemia-related complications of SCD, is associated with PHT and its association with death was unexpected. Laboratory variables predictive of disease severity included LDH and reticulocytes that reflect the intensity of hemolytic anemia. Elevated systolic blood pressure increased the odds of death by 3.4, consistent with hypertension as a marker of early death in SCD. Subjects with sickle cell anemia are at greatest risk compared with subjects with sickle cell anemia-α thalassemia and with subjects with HbSC disease. Our model suggests that the intensity of hemolytic anemia, estimated by LDH, reticulocyte count and AST, and shown previously to be associated with PHT, priapism, leg ulceration and possibly stroke, is an important contributor to death. This model can be used to compute a personalized measure of disease severity that might be useful for guiding therapeutic decisions and designing clinical trials.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2257-2257
Author(s):  
Claudia R. Morris ◽  
Jung Suh ◽  
Ward Hagar ◽  
Sandra Larkin ◽  
D. Anton Bland ◽  
...  

Abstract The erythrocyte redox environment may contribute to increased hemolysis and decreased nitric oxide (NO) bioavailability in pulmonary hypertension (PH) of sickle cell disease (SCD). Glutathione (GSH) is the principal thiol redox buffer in erythocytes and its depletion has been linked to hemolysis. Glutamine plays an additional anti-oxidant role through preservation of the intracellular nicotinamide adenine dinucleotide (NAD) levels, required for reducing GSSG back to GSH. We hypothesized that altered GSH and glutamine metabolism promotes hemolysis and contributes to PH in SCD. Glutamine, total glutathione (GSH+GSSG) and its precursors (glutamate, cysteine, glycine) were assayed in plasma and erythrocytes of 40 SCD patients and 9 controls. PH is defined by echocardiogram as a tricuspid regurgitant jet velocity (TRV) ≥ 2.5m/s. Total plasma glutathione was lower in SCD vs control patients (2.7 ± 0.3 μM vs. 4.1± 0.8 μM, p<0.05). Similarly, total erythrocyte glutathione levels were decreased in SCD vs. control patients (310 ± 26 μM vs. 683 ± 110 μM, p<0.0001). A trend towards higher GSH precursor levels identified in plasma and erythrocyte compartments suggests that the total glutathione (GSH+GSSG) deficit is due to heightened rate of GSH utilization rather than decreased synthesis capacity. While severity of erythrocyte GSH depletion was similar in SCD patients with and without PH, erythrocyte glutamine levels differed significantly (482±92μM, n=17 vs 934±134μM, n=23, p<0.02) and values inversely correlated to TRV (r = −0.51, p<0.0001). As glutamine is required for de novo synthesis of NAD(P)+ essential for GSH recycling, lower steady-state glutamine levels may reflect enhanced GSH utilization rates in the SCD erythrocytes. A significant reduction in the erythrocyte glutamine:glutamate ratio occurred in SCD patients compared with normal volunteers, with the lowest ratios observed in SCD patients with PH. The glutamine:glutamate ratio, potentially a gauge of NADPH biosynthesis and oxidative stress, was inversely correlated with TRV (r = −0.62, p<0.001), implicating glutamine bioavailability as a novel factor in the pathophysiology of PH. Changes in the glutamine:glutamate ratio were predominantly caused by decreased erythrocyte glutamine levels rather than increased glutamate levels, ruling out an effect on the ratio from increased cellular glutamine uptake. Erythrocyte glutamine:glutamate ratio correlated with age in patients with SCD (r = −0.33, p=0.04), and inversely correlated with plasma arginase concentratoin (r= −0.45, p=0.012), and plasma-Hb (r= −0.41, p=0.01), linking lower glutamine bioavailability to increased red cell derived plasma arginase, hemolysis and potentially with increased mortality in PH of SCD as previously reported (Morris et al, JAMA 2005). Decreased erythrocyte total glutathione and glutamine levels contribute to alterations in the erythrocyte redox environment, which compromise erythrocyte integrity and NO bioavailability and may play a role in hemolysis and the pathogenesis of PH of SCD.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2556-2556
Author(s):  
Emily Riehm Meier ◽  
Colleen Byrnes ◽  
Maxine Weissman ◽  
Pierre Noel ◽  
Naomi L.C. Luban ◽  
...  

Abstract Abstract 2556 Poster Board II-533 Predictors of disease severity during infancy or childhood in patients with sickle cell disease (SCD) are needed to guide treatment decisions with therapies that have known toxicities [transfusion, hydroxyurea (HU), bone marrow transplant]. Erythrocyte fetal hemoglobin (HbF) expression levels above 20% reduce sickle hemoglobin (HbS) polymerization and decrease hemolysis. As a result of the decreased hemolysis, the survival of erythrocytes is prolonged, and the overall level of erythropoiesis is reduced. To determine if clinical markers of increased HbF production and decreased erythropoiesis may be combined to score disease severity, we developed a Fetal Hemoglobin-Reticulocytosis Index (FRI) defined as: [HbF (%) × non-transfused F-cells (%)] / [Absolute Reticulocyte Count (K/uL)]. For these studies, red cell lysates were analyzed by high power liquid chromatography (HPLC) to estimate HbA, HbS, and HbF fractions. F-cells were analyzed by flow cytometry using antibodies directed against HbF, while transfused cells were labeled with antibodies directed against HbA. Dual staining with both antibodies provided a method for accurately distinguishing transfused and non-transfused F-cells (NT F-cells). A minimum of 10,000 cells was analyzed in all samples. Absolute reticulocyte counts (ARC) were determined using a Sysmex XE 2100 hematology analyzer (Sysmex America, Mundelein, IL). Preliminary studies revealed FRI values near 100 at one month of age followed by a rapid drop before the age of 4 years. Blood from children between the ages of 4 and 21 years was also studied to determine if FRI correlates with therapeutic regimen. FRI values for three groups were compared: those treated with chronic transfusion (n=19, mean FRI=0.72±1.04), HU (n=19, mean FRI=5.61±6.24), versus supportive care alone that did not include recent transfusions (n=42, mean FRI=2.70 ±4.85). When the FRI values from each of these groups were placed in rank order, the slope of the line increased sharply from a linear to an exponential shape near the FRI value of 2. To determine if the FRI=2 inflection may be indicative of reduced disease severity, the number of SCD events were determined in the 42 study subjects treated with supportive care. Overall, twenty-eight (66.7%) patients had an FRI<2, and fourteen (33.3%) patients had an FRI≥2. Among those patients, SCD events were tallied (listed in descending order according to number of events): painful crises requiring hospitalization (FRI<2, n=128; FRI≥2, n=25), pneumonia /acute chest syndrome (FRI<2, n=74; FRI≥2, n=18), splenic sequestration (FRI<2, n=14; FRI≥2, n=0), conditional transcranial Doppler [(TCD), FRI<2, n=13; FRI≥2, n=1), silent stroke (FRI<2, n=4; FRI≥2, n=2), bacteremia (FRI<2, n=2; FRI≥2, n=1), cholecystectomy (FRI<2, n=3; FRI≥2, n=0), and nephropathy (FRI<2, n=1; FRI≥2, n=0). None of the supportive care group had an overt stroke, abnormal TCD, sickle cell retinopathy, or priapism. Age adjusted analysis showed that the FRI≥2 group had significantly fewer total events per year [events/year: FRI<2 (0.70±0.52) vs. FRI≥2 (0.38 ± 0.36), p=0.02]. These data suggest that combining the clinical parameters of fetal hemoglobin production and reticulocytosis provides a simple index for SCD severity. Based upon this retrospective data, prospective studies are underway to determine if the FRI decline during infancy or FRI levels in childhood are useful to predict clinical severity and treatment decisions in SCD patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1004-1004
Author(s):  
Shaina Willen ◽  
Nirmish Shah ◽  
Courtney Thornburg ◽  
Jennifer Rothman

Abstract Abstract 1004 Hydroxyurea (HU) is approved for use in adults with Sickle Cell Disease (SCD) and increases the production of fetal hemoglobin (HbF). Increased HbF is associated with decreased clinical severity in adults and children with SCD, such as decreased numbers of vaso-occlusive events, transfusions, and hospitalizations. Higher HbF at initiation of HU is predictive of HbF response, but association between age of hydroxyurea initiation and HbF response has not been investigated. We hypothesize that starting hydroxyurea at an early age may improve hematological and clinical response. In order to determine if younger age at hydroxyurea initiation affects the percentage of HbF achieved with hydroxyurea, we conducted a retrospective cohort study. We identified subjects enrolled in the Duke University Medical Center Comprehensive Sickle Cell program who initiated hydroxyurea when they were less than 17.99 years of age and were prescribed hydroxyurea for at least six months. The following data were abstracted from the medical record between December 1996 and April 2011: age, hemoglobin, percentage HbF, and mean corpuscular volume (MCV) at start of HU and at maximum tolerated dose (MTD) of HU therapy. The correlation coefficient and p-values for various parameters were calculated. Seventy-three patients (41 males and 32 females) were included in the analysis. The mean age at hydroxyurea initiation was 5.5 years (1.2–14.1). The mean hydroxyurea dose at MTD was 28.6 ± 3.2 mg/kg/day. At initiation, the mean hemoglobin was 8.2 ± 1.2 g/dL, the mean MCV was 83±7.4 fl and mean HbF was 10 ± 5.7%. At MTD, the mean hemoglobin was 9.4 ± 1.1 g/dL, the mean MCV was 99 ± 11.1 fl, and the mean HbF was 21.7 ± 9.4%. As expected, at MTD, an elevated MCV was correlated with elevated fetal hemoglobin (r2= 0.19, p= 0.0001) [Table 1]. There was a statistically significant relationship between the age at HU initiation and the HbF at MTD (r2= 0.08, p= 0.015) [Figure 1] as well as the age at HU initiation and the hemoglobin at MTD (r2= 0.19, p= 0.016). The relationship between the age at starting HU and the overall change in HbF (DHbF) was not statistically significant (r2= 0.01, p= 0.41). There was not a statistically significant relationship between age at HU initiation and the MTD of HU (r2= 0.003, p= 0.61). The 6 patients started on HU at age less than 2 years (mean 1.5 ± 0.3 years) maintained a mean elevated HbF of 19.1 ± 5% at last documented follow-up with follow-up ranging from 1.4–13 year of uninterrupted hydroxyurea use. Starting hydroxyurea therapy at a younger age appears to improve HbF response as measured at MTD, although there is variability in the level of fetal hemoglobin attained. There is not an association seen with the DHbF or dose at MTD and age at hydroxyurea initiation. In summary, starting hydroxyurea at a younger age, when HbF is >20%, leads to persistence of HbF production and overall improvement in hematological efficacy. This was not simply the result of achieving MTD at a younger age before physiologic decline of HbF. Disclosures: Off Label Use: Hydroxyurea for complications of sickle cell disease in pediatrics. Shah:Eisai: Research Funding; Adventrx: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 972-972
Author(s):  
Samit Ghosh ◽  
Solomon F. Ofori-Acquah

Abstract Acute organ failure is a major clinical concern in sickle cell disease (SCD). However, the mechanism responsible for this potentially lethal complication is poorly understood. We tested the hypothesis that extracellular hemin liberates an intracellular danger molecule that promotes acute organ failure in SCD. Transgenic homozygous SCD (SS), sickle-trait (AS) and normal human hemoglobin (Hb) AA mice were infused with purified hemin (35 µmoles/kg), which raised total plasma hemin by ∼0.45 mM (equivalent to 0.72 g/dl Hb) within 5 min in all three groups of mice. In agreement with our previous results, SS but not AA and AS mice (n= 6 for each genotype) developed cardiopulmonary depression at 30 min evident by reductions in oxygen saturation (99.88±0.23% to 92.1±1.3%, p<0.001), breath rate (175.4±20.6 to 77.36±2.25, p<0.001, breath per min), heart rate (574.5±22.7 to 361.9±23.25 beats per min, p<0.001) and pulse distension (512.8±18.7 to 238.8±17.6 µm, p<0.001), and ∼70% of these animals died within 2 hours. Markedly raised lung wet/dry weight ratio in SS mice that succumbed to hemin suggests that the cardiopulmonary depression was secondary to a severe pulmonary edema. To identify biological correlates for the acute adverse effects in the SS mice, cohorts of both sickle and control mice were challenged with the same dose of hemin, blood samples were drawn at baseline (i.e. time=0 min), and 5 and 30 min after the hemin infusion and analyzed for markers of oxidative stress, tissue damage, plasma scavengers and high mobility group box-1 (HMGB-1), a prototypical danger molecule. Plasma hemopexin decreased by ∼80% at 5 min compared to baseline values in all three groups of mice regardless of the Hb genotype. The catabolism of hemopexin was associated with clearance of ∼50% of the hemin infusion from the circulation of AS and AA mice at 30 min. Paradoxically, the plasma concentration of hemin in the SS mice during this same time interval increased by ∼0.2 mM (p<0.001, n=6). The magnitude of this increase was dependent on the dose of hemin administered exogenously. We discovered that the de novo hemin release in the SS mice was preceded by acute intravascular hemolysis (mean decrease in total Hb: ∼1.4 g/dl, p<0.001, n=9, mean increase in cell-free Hb: 1.0 g/dl, p=0.001, n=9), oxidation of oxyHbS to metHbS (mean increase: 12%, p<0.001, n=6) and persistence of metHbS. It is noteworthy that de novo hemin release did not occur in AS mice suggesting that this phenomenon is dominantly influenced by sickle erythrocytes and not by the presence of intracellular HbS per se. Auto-amplification of hemin may help to explain an observation made nearly fifty years ago that SCD patient plasma contains more hemin than the plasma of patients with more severe intravascular hemolysis involving normal adult Hb (e.g. paroxysmal nocturnal hemoglobinuria), who have higher plasma Hb. To determine whether this phenomenon is critical to the cardiopulmonary depression in the SS mice, recombinant human hemopexin was administered 5 min after the infusion to sequester the endogenous hemin release. In hemin challenged SS mice with respiratory distress, intravenous recombinant human hemopexin rapidly halted the decline in oxygen saturation and breath rate and averted inevitable respiratory failure. In conclusion, we have identified a phenomenon of extracellular hemin auto-amplification that appears to be unique to SCD, and may play a critical role in propagating tissue injury in this disorder. Factors that inhibit erythrocyte lysis and accelerate metHb reduction may help to limit extracellular hemin amplification and preserve organ function during episodes of acute exacerbations in SCD. Disclosures: No relevant conflicts of interest to declare.


Hematology ◽  
2004 ◽  
Vol 2004 (1) ◽  
pp. 35-47 ◽  
Author(s):  
George R. Buchanan ◽  
Michael R. DeBaun ◽  
Charles T. Quinn ◽  
Martin H. Steinberg

Abstract Much progress has been made during the past several decades in gaining understanding about the natural history of sickle cell disease and management approaches aimed at treating or even preventing certain disease complications. The characterization of the human genome now offers the opportunity to understand relationships regarding how gene polymorphisms as well as how environmental factors affect the sickle cell disease phenotype, i.e., the individual patient’s overall clinical severity as well as their specific organ function. This chapter explores some of these recent advances in knowledge. In Section I, Dr. Michael DeBaun characterizes the problem of silent stroke in sickle cell disease, comparing and contrasting its clinical and neuroimaging features with overt stroke. Combined, these events affect virtually 40% of children with sickle cell anemia. New understanding of risk factors, associated clinical findings, and imaging technologies are impacting substantially on treatment options. The appreciable cognitive dysfunction and other sequelae of silent infarct demand more effective treatments and ultimate prevention. In Section II, Dr. Charles Quinn addresses the conundrum of why some patients with sickle cell disease do well whereas others fare poorly. Some risk factors have been known for years, based upon careful study of hundreds of patients by the Cooperative Study for Sickle Cell Disease and investigators studying the Jamaican newborn cohort. Other prognostic measures have only recently been defined. Dr. Quinn devotes special attention to stroke and chest syndrome as organ-related complications but also describes attempts to measure overall disease severity and to predict survival. Recently, investigators have attempted to predict factors responsible for early mortality in children and following onset of pulmonary hypertension in adults. In Section III, Dr. Martin Steinberg reviews pharmacologic approaches to sickle cell disease and the rationale for their use. In addition to the inhibition of hemoglobin S polymerization, newer targets have been defined during the past one to two decades. These include the erythrocyte membrane, changes in the red cell intracellular content (especially loss of water), endothelial injury, and free radical production. Hydroxyurea treatment attracted the greatest interest, but many uncertainties remain about its long-term benefits and toxicities. Newer “anti-sickling” agents such as decitabine and short-chain fatty acids also receive attention. Prevention of red cell dehydration, “anti-endothelial” therapy, and marshaling the potentially beneficial effects of nitric oxide are other new and exciting approaches.


2000 ◽  
Vol 96 (3) ◽  
pp. 264-268 ◽  
Author(s):  
J.B. Schnog ◽  
S.O. Keli ◽  
R.A. Pieters ◽  
R.A. Rojer ◽  
A.J. Duits

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 955-955
Author(s):  
Cristiane Maria de Souza ◽  
Carolina Lanaro ◽  
Irene Pereira dos Santos ◽  
Oladele Olatunya ◽  
Sara T Olalla Saad ◽  
...  

Abstract Extracellular vesicles (EVs) are submicron structures released in blood circulation by different cell types which have been found to be increased in sickle cell disease (SCD) and are associated with clinical complications. The most abundant EVs in SCD patients derive from platelets, endothelial cells, and red blood cells (RBCs) and EVs have been explored as biomarkers of clinical severity. Crizanlizumab is a monoclonal antibody against P-selectin, an adhesion molecule expressed in activated platelets and endothelial cells. P-selectin facilitates the formation of heterocellular aggregates and is implicated in the pathophysiology of vaso-occlusive episodes (VOEs) in SCD. This study aimed to investigate the circulating levels of EVs in patients with SCD on standard of care or treated with crizanlizumab. We collected peripheral blood samples from 20 adults with SCD (Non treated group: 7 patients on hydroxyurea treatment and 7 without it. Treated group: 6 patients undergoing treatment with crizanlizumab in combination with hydroxyurea). Patients received the last dose of crizanlizumab at least a month prior to the study. EVs were identified by lactadherin+calcein stain and quantified by flow cytometry to determine the immunophenotype of their parent cell (platelet, endothelial cell, and RBC, with CD41+; CD146+/CD45-; CD235+, respectively). EV quantification was calculated in number per ml of blood as previously described by our group (Olatunya et al., 2019). We found that patients on crizanlizumab had lower total circulating EV counts than patients not receiving the drug (62.670.000,00 ± 15.600.000,00 vs 13.100.000,00 ± 3.513.000,00/mL, respectively, p=0,0076). The difference was statistically significant in platelet-derived EVs levels (5.397.000,00 ± 953.875,00 vs 2.413.000,00 ± 745.165,00/mL, p=0,0169), but not in endothelium-derived or RBC-derived EVs (345714 ± 101817 vs 220000 ± 64291, and 2.189.000,00 ± 1.648.000,00 vs 1.013.000,00 ± 572775, respectively). Crizanlizumab therapy has been shown to reduce the incidence of VOEs in SCD. EVs have been recognized as bio-effectors involved in VOEs, contributing to a hypercoagulable state, chronic inflammation, and endothelial damage. Our findings show an association between the use of crizanlizumab and lower EV levels, particularly of the platelet-derived type. While the anti-P-selectin activity of crizanlizumab could be expected to help remove platelets from circulation, clinical studies have not reported a reduction in platelet counts in patients treated with crizanlizumab. Therefore, we speculate that crizanlizumab may decrease the release of EV by activated platelets, reduce platelet activation, or contribute to EV removal from circulation. Our findings suggest that crizanlizumab therapy may modulate EV levels in the plasma of SCD patients and provide, for the first time, data to support exploring the use of extracellular vesicles as biomarkers to monitor the clinical response to this drug in patients. Further studies on EV expression of P-selectin and how crizanlizumab interacts with EVs and platelets may help clarify this particular effect of this drug. Disclosures Benites: Novartis: Honoraria. Fertrin: Sanofi Genzyme: Consultancy, Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Costa: Novartis: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document