scholarly journals PI3-Kinase Deletion Dysregulates Autophagy in HSCs and Promotes Myelodysplasia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 323-323
Author(s):  
Kristina Ames ◽  
Imit Kaur ◽  
Shayda Hemmati ◽  
Shira Glushakow-Smith ◽  
Lindsay Meg Gurska ◽  
...  

Abstract Myelodysplastic Syndrome (MDS) is a heterogeneous clonal malignancy arising in hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis, cytopenias, and the potential to progress to acute myeloid leukemia (AML). However, the perturbations in HSCs that lead to MDS initiation are poorly understood. It has been reported that HSCs are particularly dependent on autophagy for the maintenance of differentiation and self-renewal. We observed that, compared to healthy donor bone marrow hematopoietic stem and progenitor cells (HSPCs), MDS patient stem and progenitor cells (Lin-CD33-CD34+CD38-) have abnormal levels of autophagic degradation, as demonstrated by abnormal intracellular LC3II and P62 staining (Figure 1A). Autophagy is known to be regulated by the (PI3K)/AKT pathway, which transduces hematopoietic growth factor and cytokine signals in HSCs. PI3K/AKT is frequently activated in AML, but its role in MDS is less clear. Surprisingly, we found that CD34+ cells from a subset of MDS patients have upregulated expression of PTEN, the major negative regulator of the PI3K/AKT pathway, suggesting that PI3K/AKT may be downregulated in MDS stem cells. Therefore, we hypothesized that the Class IA PI3K isoforms (P110α, β, and δ) are required to maintain HSC differentiation and self-renewal. To understand the consequences of PI3K downregulation in HSCs, we generated a triple knockout (TKO) mouse model with conditional deletion of P110α and P110β in hematopoietic cells, and germline deletion of P110δ. Surprisingly, we found that PI3K deletion causes transplantable pancytopenia and decreased survival, despite the abnormal expansion of donor TKO HSCs (Figure 1 B,C). Consistent with this inefficient hematopoiesis, TKO bone marrow cells exhibited dysplastic features in multiple blood lineages and multiple chromosomal abnormalities (Figure 1 E,F), suggesting that PI3K inactivation in HSCs can promote MDS initiation. To determine whether impaired HSC differentiation in TKO mice could be due to dysregulated autophagy, we assessed autophagy in TKO HSCs by flow cytometry and immunofluorescence with the autophagosomal marker, LC3II. Our results showed that, compared to the WT controls, TKO HSCs have inefficient autophagic flux and decreased degradation of the cargo protein P62. We also discovered that TKO HSCs have significantly enlarged autophagic vesicles (Figure 1 G), and impaired fusion of autophagosomes with lysosomes, consistent with a marked defect in autophagic degradation. Treatment of TKO mice with two pharmacologic inducers of autophagy, rapamycin or metformin, improved HSC differentiation with an increase in Flk2+ MPPs (Figure 1 H), reduced dysplasia, and decreased the size of the TKO mutant clone in chimeric mice. Thus, our results uncover an important role for PI3K in regulating autophagy in HSCs to maintain the proper balance between self-renewal and differentiation. Our new mouse model of MDS will be a useful tool to study the mechanisms of MDs initiation. In addition, our findings open exciting avenues for future investigations of autophagy-inducing agents in MDS. Figure 1 Figure 1. Disclosures Verma: Celgene: Consultancy; Stelexis: Current equity holder in publicly-traded company; Throws Exception: Current equity holder in publicly-traded company; Acceleron: Consultancy; Novartis: Consultancy; Stelexis: Consultancy, Current equity holder in publicly-traded company; Eli Lilly: Research Funding; Curis: Research Funding; Medpacto: Research Funding; Incyte: Research Funding; BMS: Research Funding; GSK: Research Funding. Gritsman: iOnctura: Research Funding.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1234-1234
Author(s):  
Robert S Welner ◽  
Giovanni Amabile ◽  
Deepak Bararia ◽  
Philipp B. Staber ◽  
Akos G. Czibere ◽  
...  

Abstract Abstract 1234 Specialized bone marrow (BM) microenvironment niches are essential for hematopoietic stem and progenitor cell maintenance, and recent publications have focused on the leukemic stem cells interaction and placement within those sites. Surprisingly, little is known about how the integrity of this leukemic niche changes the normal stem and progenitor cells behavior and functionality. To address this issue, we started by studying the kinetics and differentiation of normal hematopoietic stem and progenitor cells in mice with Chronic Myeloid Leukemia (CML). CML accounts for ∼15% of all adult leukemias and is characterized by the BCR-ABL t(9;22) translocation. Therefore, we used a novel SCL-tTA BCR/ABL inducible mouse model of CML-chronic phase to investigate these issues. To this end, BM from leukemic and normal mice were mixed and co-transplanted into hosts. Although normal hematopoiesis was increasingly suppressed during the disease progression, the leukemic microenvironment imposed distinct effects on hematopoietic progenitor cells predisposing them toward the myeloid lineage. Indeed, normal hematopoietic progenitor cells from this leukemic environment demonstrated accelerated proliferation with a lack of lymphoid potential, similar to that of the companion leukemic population. Meanwhile, the leukemic-exposed normal hematopoietic stem cells were kept in a more quiescent state, but remained functional on transplantation with only modest changes in both engraftment and homing. Further analysis of the microenvironment identified several cytokines that were found to be dysregulated in the leukemia and potentially responsible for these bystander responses. We investigated a few of these cytokines and found IL-6 to play a crucial role in the perturbation of normal stem and progenitor cells observed in the leukemic environment. Interestingly, mice treated with anti-IL-6 monoclonal antibody reduced both the myeloid bias and proliferation defects of normal stem and progenitor cells. Results obtained with this mouse model were similarly validated using specimens obtained from CML patients. Co-culture of primary CML patient samples and GFP labeled human CD34+CD38- adult stem cells resulted in selective proliferation of the normal primitive progenitors compared to mixed cultures containing unlabeled normal bone marrow. Proliferation was blocked by adding anti-IL-6 neutralizing antibody to these co-cultures. Therefore, our current study provides definitive support and an underlying crucial mechanism for the hematopoietic perturbation of normal stem and progenitor cells during leukemogenesis. We believe our study to have important implications for cancer prevention and novel therapeutic approach for leukemia patients. We conclude that changes in cytokine levels and in particular those of IL-6 in the CML microenvironment are responsible for altered differentiation and functionality of normal stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3234-3234
Author(s):  
Evangelia Yannaki ◽  
Nikoleta Psatha ◽  
Maria Demertzi ◽  
Evangelia Athanasiou ◽  
Eleni Sgouramali ◽  
...  

Abstract Abstract 3234 Poster Board III-171 Gene therapy has been recently postulated as a realistic therapeutic potential for thalassemia and the mobilized autologous hematopoietic stem cells (HSCs) may represent the preferable source of stem cells for genetic modification due to the higher yield of HSCs compared to conventional bone marrow (bm) harvest. We have previously shown (manuscript under revision) that G-CSF mobilization in the HBBth-3 thalassemic mouse model is less efficient compared to normal C57Bl6 strain, mainly due to increased trapping of hematopoietic stem (Lin-sca-1+ckit+–LSK) and progenitor cells (CFU-GM) in the enlarged thalassemic spleen. The novel mobilizer, AMD3100 (plerixafor, mozobil), has been shown to reversibly bind to CXCR4 and inhibit the interaction between SDF-1 and CXCR4 within the bm microenvironment, resulting in the egress of CD34+ cells into the circulation of healthy donors and cancer patients. The addition of AMD to G-CSF results in even greater increases in circulating CD34+cells. We explored in the current study whether AMD alone or in combination with G-CSF improves the mobilization efficiency of thalassemic mice. C57 and HBBth-3 mice received G-CSF-alone at 250microgr/kgX7 days, AMD-alone at 5mg/kgX3 days or the combination of two with AMD administered in the evening of days 5-7 of G-CSF administration. Hematopoietic tissues (blood, bm, spleen) were collected and the absolute LSK and CFU-GM numbers were calculated based on their frequency within tissues (by FCM and clonogenic assays) in relation to the individual cell count per tissue. AMD-alone didn't significantly affect the HSC yield as compared to G-CSF mobilization in thal mice (LSK/μl blood: 103±85 vs 69±26 p=ns), although it significantly increased the circulating Colony Forming Cells (CFU-GM/ml blood: 1205±533 vs 330±87, p=0,05). In contrast, the AMD+G-CSF combination significantly improved the mobilization efficiency of HBBth-3 mice over the G-CSF-treated group (LSK cells/μl blood: 224±104 vs 69±26 p=0,04, CFU-GM/ml blood: 1671±984 vs 330±87 p=0,05, respectively) at levels comparable to normal mice treated with G-CSF (LSK cells/ μl blood: 241±167, CFU-GM/ml blood: 1235±1140, respectively). AMD induced a “detachment” of stem cells from the bm because reduced numbers of bm LSK cells were counted in the AMD-alone group as compared to the untreated group (LSK/2 femurs×103: 692±429 vs 1687±1016, respectively, p=0,05). This was in contrast to the marrow hyperplasia caused by G-CSF over the steady-state condition (LSK/2 femurs×103: 2684±1743 vs 1687±1016 p=0,02 / CFU-GM/2femurs:111.841±15.391 vs 76.774±31.728 p=0,01). Consequently, the combination of AMD+G-CSF resulted in increased numbers of circulating stem and progenitor cells without inducing marrow hyperplasia as compared to steady-state condition (LSK/2femurs×103: 1681±862 vs 1686±1017, p=ns / CFU-GM/2femurs: 76.774±31.728 vs 82.905±26.277, p=ns). AMD, also in contrast to G-CSF, did not cause increased trapping of stem and progenitor cells in the spleen compared to the untreated condition (LSK cells/spleen×103: 4738±2970 vs 8303±4166 p=ns / CFU-GM/spleen:146.269±93.174 vs 98.518±25.549, p=ns). However, the combination of AMD+G-CSF still resulted in splenic sequestration of progenitor cells (CFU-GM/spleen: 412.176±157.417 vs 98.518±25.549, p=0,0003) but not of LSK cells (LSK cells/spleen×103: 10.200±7.260 vs 8.300±4.166 p=ns). Overall, the combination of AMD3100+G-CSF seems to restore the less efficient mobilization in a thalassemic mouse model. This combination may prove beneficial in a GT setting for obtaining the high numbers of HSCs needed for genetic correction. In addition, the combination of AMD3100+G-CSF, by avoiding the marrow hyperplasia induced by G-CSF alone, indicates a better safety profile because it will not further burden the hyperplastic –due to the increased erythroid demand and the intramarrow destruction of erythroblasts-thalassemic bone marrow. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 403-403
Author(s):  
Anthony Rongvaux ◽  
Tim Willinger ◽  
Hitoshi Takizawa ◽  
Chozhavendan Rathinam ◽  
Elizabeth E. Eynon ◽  
...  

Abstract Abstract 403 Hematopoietic stem cells (HSCs) both self-renew and give rise to all blood cells for the lifetime of an individual. Xenogeneic mouse models are currently broadly used to experimentally study human hematopoietic stem and progenitor cell biology in vivo. However, maintenance, differentiation, and function of human hematopoietic cells are suboptimal in these hosts. More specifically, (i) human cell engraftment is only transient, not lasting for the life of recipient mice, (ii) there is an unphysiological bias towards the lymphoid lineage as well as poor differentiation of myeloid cells, and (iii) there is an important variability in the engraftment levels between different individual animals. Thrombopoietin (TPO) has been demonstrated as a crucial cytokine supporting maintenance and self-renewal of HSCs. Although TPO is mouse to human cross-reactive at supraphysiological levels, we speculated that species differences would lead to insufficient TPO activity on human cells in the xenogeneic environment. We thus generated RAG2−/−γc−/− mice in which we replaced the gene encoding mouse TPO by its human homologue. This led to the expression of human TPO at human physiological levels in the serum and tissues of TPO knockin mice. Homozygous humanization of TPO (TPOh/h) led to significantly increased levels of human engraftment in the bone marrow of the hosts (an approximately 2-fold increase). TPOh/h recipients also displayed a lower engraftment variability, with an at least 80% human chimerism in 75% of the mice, and engraftment levels were maintained for longer periods of time, up to 6–7 months, while they declined after 4 months in control recipient mice. Multilineage differentiation of hematopoietic cells was also improved, with an increased ratio between granulocytes versus and lymphocytes that better reflects the physiological human blood composition. Thus, TPOh/h recipient mice provide significant improvements compared to previously available models in all three limitations listed above. Importantly, we performed phenotypical and functional analyses of human hematopoietic stem and progenitor cells in TPOh/h compared to control recipients. We observed a significant increase in the fraction of human Lin−CD34+CD38loCD90+CD45RA− cells, a population previously identified as highly enriched in functional long-term HSC. Because serial transplantation is the most stringent protocol to functionally measure the self-renewal capacity of HSCs, we purified human CD34+ cells from TPOh/h and control primary recipients and transplanted them into secondary recipients. Human CD34+ cells isolated from control primary recipients had a very low capacity to serially engraft (with human CD45+ cells detected in only 2 of 11 secondary recipients). By contrast, CD34+ cells isolated from TPOh/h primary recipients had an increased capacity to efficiently engraft secondary recipients (with human CD45+ cells present in the bone marrow of 15 of 19 secondary recipients). This result indicates that the presence of human TPO in the primary recipient favored the maintenance of human cells with enhanced self-renewal capacity. In conclusion, we demonstrate here that RAG2−/−γc−/− TPO-humanized mice efficiently support a population of cells immunophenotypically and functionally enriched in hematopoietic stem and progenitor cells. This leads to enhanced engraftment levels, better maintenance of human chimerism and improved multilineage differentiation. Therefore, RAG2−/−γc−/− TPO-humanized mice represent a novel model to study human hematopoiesis in vivo. We anticipate that this model will be useful to study human hematopoietic stem cells in vivo, with applications in the fields of hematopoiesis, hematology and hematolo-oncology. Disclosures: Stevens: Regeneron Pharmaceuticals: Employment; AnaptysBio Inc: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1472-1472
Author(s):  
Ruzhica Bogeska ◽  
Paul Kaschutnig ◽  
Stella Paffenholz ◽  
Julia Maassen ◽  
Jan-Philipp Mallm ◽  
...  

Abstract An often-cited defining property of hematopoietic stem cells (HSCs) is their extensive or unlimited in vivo self-renewal capacity. We have recently described a novel mouse disease model forFanconi anemia, in which serial challenge with pro-inflammatory agonists that mimic infection, such aspolyinosinic:polycytidylic acid (pI:C), results in HSC attrition followed by a highly penetrant severe aplastic anemia, closely recapitulating the disease in patients (Walter et al., 2015, Nature). In order to explore the broader implications of these findings in the context of HSC self-renewal, we conducted apI:Cdose escalation regimen using standard C57BL6 mice. A single injection withpI:Cprovoked transient peripheral blood (PB)cytopenias, with the recovery of mature blood cell numbers correlating with HSCs being forced into active cell cycle. Injection with 1-3 rounds ofpI:C(1-3 x 8 injections) led to no discernable sustained impact on blood production as, at 5 weeks post-treatment, PB frequencies were in the normal range, as were the absolute numbers of HSCs and all progenitor compartments in the bone marrow (BM), as determined by flowcytometry. However, in vitro analysis of the proliferation and differentiation potential of 411 individual sorted long-term (LT)-HSCs 5 weeks after 3 rounds of pI:C challenge, revealed a decrease in the frequency of LT-HSCs able to generate progeny in vitro (1.6-fold reduction, p<0.05), and a 2-fold reduction in the total number of progeny produced per HSC, which was even more pronounced inmultilineage potential clones (2.6-fold decrease, p<0.0001) compared touni- or bi-lineage clones. In line with this data, competitive repopulation assays demonstrated a progressive depletion of functional HSC numbers with increasing rounds ofpI:C treatment, with a 1.8, 3.4 and 15.3-fold decrease in donorchimerism across all lineages at 6 months post-transplantation (p<0.01) following 1, 2 or 3 rounds ofpI:C treatment, respectively. Notably, robust engraftment (up to 65% donorchimerism, 6 months post-transplantation, p<0.01) was achieved when mice exposed to 3 rounds ofpI:C treatment were used as a recipient for non-treated BM cells in the absence of any irradiation conditioning, while engraftment was always <1% when non-treated controls were used as recipients. This excludes the possibility that the observed progressive depletion of functional HSCs was the result of artifacts associated with a compromised niche or the non-physiologic stress imposed on donor cells during transplantation. In order to test the kinetics of HSC recovery following HSC challenge, BM was harvested from mice at either 5, 10 or 20 weeks after treatment with 3 rounds of pI:C, and both competitive and limiting dilution transplantation assays (Table 1) were used to quantify HSC frequencies. Surprisingly, both assays demonstrated that HSCs failed to regenerate at all following pI:Cchallenge, directly contradicting the canonical view that HSCs possess extensive self-renewal capacity in vivo. The physiologic relevance of this observation was illustrated when we measured the hematologic parameters of aged mice that had been exposed to chronicpI:C treatment in early to mid-life. Although these mice had normal PB counts at 4 weeks post-treatment, at 2 years of age, peripheral bloodcytopenias and bone marrow aplasia became evident (Table 2), recapitulating clinically relevant features of non-malignant aged human hematopoiesis that are never seen in standard laboratory mice. Together, these data suggest that functional HSCs can be progressively and irreversibly depleted in response to environmental agonists, such as infection and inflammation, which force HSCs to reconstitute mature blood cells consumed by such stimuli. This model has clear implications relating to the role of adult stem cells in tissue maintenance and regeneration during ageing, and how stress agonists that are absent in most laboratory animal models, but would be ubiquitous in the wild, are likely key mediators of age-associated disease pathologies. Disclosures Frenette: PHD Biosciences: Research Funding; Pfizer: Consultancy; GSK: Research Funding.


Cell Reports ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 964-975 ◽  
Author(s):  
Heather A. Himburg ◽  
Jeffrey R. Harris ◽  
Takahiro Ito ◽  
Pamela Daher ◽  
J. Lauren Russell ◽  
...  

Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 386-386 ◽  
Author(s):  
Grant A. Challen ◽  
Deqiang Sun ◽  
Mira Jeong ◽  
Min Luo ◽  
Jaroslav Jelinek ◽  
...  

Abstract Abstract 386 Aberrant genomic DNA methylation patterns are widely reported in human cancers but the prognostic value and pathological consequences of these marks remain uncertain. CpG methylation is catalyzed by a family of DNA methyltransferase enzymes comprised of three members – Dnmt1, Dnmt3a and Dnmt3b. Mutations in the de novo DNA methyltransferase enzyme DNMT3A have now been reported in over 20% of adult acute myeloid leukemia (AML) and 10–15% of myelodysplastic syndrome (MDS) patients. However, analysis of promoter methylation and gene expression in these patients has thus far failed to yield any mechanistic insight into the pathology of DNMT3A mutation-driven leukemia. In this study, we have used a conditional knockout mouse model to study the role of Dnmt3a in normal hematopoiesis. Hematopoietic stem cells (HSCs) from Mx1-Cre:Dnmt3afl/fl mice were serially transplanted into lethally irradiated recipient mice to study the effect of loss of Dnmt3a on HSC self-renewal and differentiation. We show that loss of Dnmt3a progressively impedes HSC differentiation over four-rounds of serial transplantation, while simultaneously expanding HSC numbers in the bone marrow. Examination of the bone marrow post-transplant revealed that control HSCs showed a gradual decline in their ability to regenerate the HSC pool at each successive round of transplantation, while in contrast Dnmt3a-KO HSCs show a remarkably robust capacity for amplification, generating 40,000 – 100,000 HSCs per mouse. Quantification of peripheral blood differentiation on a per HSC basis demonstrated in the absence of Dnmt3a, a cell division is more likely to result in a self-renewal rather than differentiation fate (Figure 1). Using semi-global reduced representation bisulfite sequencing (RRBS), we show that Dnmt3a-KO HSCs manifest both increased and decreased methylation at distinct loci, including dramatic CpG island hypermethylation. Global transcriptional analysis by microarray revealed that Dnmt3a-KO HSCs show upregulation of HSC multipotency genes coupled with simultaneous downregulation of early differentiation factors (e.g. Flt3, PU.1, Mef2c), likely inhibiting the initial stages of HSC differentiation. Upregulation of key HSC regulators including Runx1, Gata3 and Nr4a2 was associated with gene-body hypomethylation and activated chromatin marks (H3K4me3) in Dnmt3a-KO HSCs. Finally, we show that Dnmt3a-KO HSCs are unable to methylate and transcriptionally repress these key HSC multipotency genes in response to chemotherapeutic ablation of the hematopoietic system, leading to inefficient differentiation and manifesting hypomethylation and incomplete repression of HSC-specific genes in their limited differentiated progeny. In conclusion, we show that Dnmt3a plays a specific role in permitting HSC differentiation, as in its absence, phenotypically normal but impotent stem cells accumulate and differentiation capacity is progressively lost. This differentiation-deficit phenotype is reminiscent of Dnmt3a/Dnmt3b-null embryonic stem (ES) cells while markedly distinct from that of Dnmt1-KO HSCs which show premature HSC exhaustion and lymphoid-deficient differentiation, demonstrating distinct roles for the different DNA methyltransferase enzymes in HSCs. In light of the recently-identified DNMT3A mutations in AML and MDS patients, these studies are the first biological models linking mutation of Dnmt3a with inhibition of HSC differentiation which may be one of the first pathogenic steps occuring in such patients.Figure 1Dnmt3a-KO HSCs become biased towards self-renewal as opposed to differentiation. At each transplant round, the self-renewal quotient was calculated as the number of donor-derived HSCs recovered at the end of the transplant divided by 250 (the number of HSC initially transplanted). The differentiation quotient was calculated as (the white blood cell count per μl of blood at 16 weeks) X (percentage of donor-cell chimerism)/number of donor HSC at the end of the transplant. Over serial transfer, Dnmt3a-KO HSCs more rapidly lose their differentiation capacity compared to control HSCs, while sustaining robust self-renewal.Figure 1. Dnmt3a-KO HSCs become biased towards self-renewal as opposed to differentiation. At each transplant round, the self-renewal quotient was calculated as the number of donor-derived HSCs recovered at the end of the transplant divided by 250 (the number of HSC initially transplanted). The differentiation quotient was calculated as (the white blood cell count per μl of blood at 16 weeks) X (percentage of donor-cell chimerism)/number of donor HSC at the end of the transplant. Over serial transfer, Dnmt3a-KO HSCs more rapidly lose their differentiation capacity compared to control HSCs, while sustaining robust self-renewal. Disclosures: Issa: Novartis: Honoraria; GSK: Consultancy; SYNDAX: Consultancy; Merck: Research Funding; Eisai: Research Funding; Celgene: Research Funding; Celgene: Honoraria; J&J: Honoraria.


2020 ◽  
Author(s):  
Kristina Ames ◽  
Imit Kaur ◽  
Yang Shi ◽  
Meng Tong ◽  
Taneisha Sinclair ◽  
...  

AbstractHematopoietic stem cells (HSCs) maintain the blood system through a delicate equilibrium between self-renewal and differentiation. Most hematopoietic growth factors and cytokines signal through phosphoinositide 3-kinase (PI3K) via three Class IA catalytic PI3K isoforms (P110α, β, and δ), encoded by Pik3ca, Pik3cb, and Pik3cd, respectively. The PI3K/AKT pathway is commonly activated in acute myeloid leukemia (AML), and PI3K is a common therapeutic target in cancer. However, it is not known whether PI3K is required for HSC differentiation or self-renewal. We previously demonstrated that individual PI3K isoforms are dispensable in HSCs1,2. To determine the redundant roles of PI3K isoforms in HSCs, we generated a triple knockout (TKO) mouse model with deletion of all three Class IA PI3K isoforms in the hematopoietic system. Surprisingly, we observed significant expansion of TKO HSCs after transplantation, with decreased differentiation capacity and impaired multilineage repopulation. Additionally, the bone marrow of TKO mice exhibited myelodysplastic features with chromosomal abnormalities. Interestingly, we found that macroautophagy (thereafter autophagy) is impaired in TKO HSCs, and that pharmacologic induction of autophagy improves their differentiation. Therefore, we have uncovered important roles for PI3K in autophagy regulation in HSCs to maintain the balance between self-renewal and differentiation.


2019 ◽  
Vol 3 (3) ◽  
pp. 419-431 ◽  
Author(s):  
Fang Dong ◽  
Haitao Bai ◽  
Xiaofang Wang ◽  
Shanshan Zhang ◽  
Zhao Wang ◽  
...  

Abstract The cell of origin, defined as the normal cell in which the transformation event first occurs, is poorly identified in leukemia, despite its importance in understanding of leukemogenesis and improving leukemia therapy. Although hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were used for leukemia models, whether their self-renewal and differentiation potentials influence the initiation and development of leukemia is largely unknown. In this study, the self-renewal and differentiation potentials in 2 distinct types of HSCs (HSC1 [CD150+CD41−CD34−Lineage−Sca-1+c-Kit+ cells] and HSC2 [CD150−CD41−CD34−Lineage−Sca-1+c-Kit+ cells]) and 3 distinct types of HPCs (HPC1 [CD150+CD41+CD34−Lineage−Sca-1+c-Kit+ cells], HPC2 [CD150+CD41+CD34+Lineage−Sca-1+c-Kit+ cells], and HPC3 [CD150−CD41−CD34+Lineage−Sca-1+c-Kit+ cells]) were isolated from adult mouse bone marrow, and examined by competitive repopulation assay. Then, cells from each population were retrovirally transduced to initiate MLL-AF9 acute myelogenous leukemia (AML) and the intracellular domain of NOTCH-1 T-cell acute lymphoblastic leukemia (T-ALL). AML and T-ALL similarly developed from all HSC and HPC populations, suggesting multiple cellular origins of leukemia. New leukemic stem cells (LSCs) were also identified in these AML and T-ALL models. Notably, switching between immunophenotypical immature and mature LSCs was observed, suggesting that heterogeneous LSCs play a role in the expansion and maintenance of leukemia. Based on this mouse model study, we propose that acute leukemia arises from multiple cells of origin independent of the self-renewal and differentiation potentials in hematopoietic stem and progenitor cells and is amplified by LSC switchover.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


Sign in / Sign up

Export Citation Format

Share Document