scholarly journals Development of Notch1 Positive T-Lineage Lymphomas or Splenic Marginal Zone Lymphomas with Pan-Hematopoietic or Pro-B Cell Specific Deletion of Trp53 with Distinct Differentially Dysregulated Pathways

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2229-2229
Author(s):  
Jayanth Kumar Palanichamy ◽  
Tiffany Tran ◽  
Jennifer King ◽  
Sol Katzman ◽  
Gunjan Sharma ◽  
...  

Abstract Deletion of the tumor suppressor gene TP53 (Trp53 in mice) has been associated with the development of numerous human malignancies. TP53 acts as a central coordinator of the DNA damage response. In mice, pan-Trp53 deletion leads predominantly to the development of T-cell lymphomas, followed by B-cell lymphomas, sarcomas and teratomas. In order to dissect the role of Trp53 in the hematopoietic system, we created two different loss of function mouse models: Pan-hematopoietic Trp53 deletion using Vav1-Cre based deletion; and a B-cell-specific deletion was created using CD19-Cre. Vav1-p53CKO mice developed hematolymphoid malignancies with 100% penetrance by 12 months. Most malignancies observed were CD3e+ T-lineage lymphomas involving the thymus or spleen (37/45). Beyond 200 days, these mice predominantly developed mixed myeloid malignancies. The shift away from T-lineage malignancies in older mice may reflect aging-related decline of pre-malignant lymphoid progenitors and skewing to myeloid progenitors. Flow cytometric characterization of the T-lineage lymphomas identified a mix of tumors, including double-negative (CD4-CD8-), double-positive (CD4+CD8+), or single positive (CD4/CD8). In pre-malignant mice, Vav1-p53CKO thymocytes showed accelerated maturation with most of the cells in the DN4 stage, suggesting a bypass of the p53-dependent DN3 β-selection checkpoint. All T-lineage lymphomas showed overexpression of surface Notch1 as well as overexpression of Notch1 targets Hes1 and p21 at the transcript level. Consistent with prior data, normal murine thymocyte subsets showed high levels of expression of Notch1 target genes at the DN3 stage of development, which appears dysregulated in these T-lineage lymphomas. This Notch1 activation was found to be multifactorial with increased Mdm2 and decreased Numb levels seen in tumors. Overall, we demonstrate Notch1 activation and subsequent acceleration through the T-cell developmental stages in this model of pan-hematopoietic Trp53 deletion. The B-cell specific Trp53 knockout mice (CD19-P53CKO) (n=54) were followed up for up to 2 years. The majority (47/54) developed splenomegaly in an age-dependent manner. Histologic examination showed marginal zone expansion (6/54), frank low-grade marginal zone lymphoma (16/54) or diffuse splenic lymphoma (25/54). The disease was confined to the spleen in the case of lower-grade histology while higher grades correlated with liver and kidney involvement. Flow cytometric analysis of tumors showed B220+ CD19+ IgM+ cells. Interestingly, these tumors demonstrated low levels of Notch2 expression, which normally is highly expressed in marginal zone B-cells. In order to characterize pathogenesis, we sorted follicular and marginal zone B-cells from floxed P53 and pre-malignant CD19-P53CKO mice. RNA was isolated from all these fractions and the spleens of 5 CD19-P53KO mice with diffuse lymphoma and subjected to RNA-Seq. A comparison of the floxed p53 with the CD19-P53CKO fractions (follicular and marginal zone) revealed a highly similar transcriptome. On the other hand, p53-deficient lymphomas showed >10,000 genes significantly differentially expressed demonstrating the unique transcriptome which developed during malignant transformation. Pathway analysis of these genes using Gene Set Enrichment Analysis (GSEA) identified enrichment of PI3K, Rap1 and MAPK signaling pathways, which are associated with cellular proliferation. Overexpression of the PI3K pathway genes Ccne1, Sgk1, Mapk13 and Pik3cb were validated by qPCR in 10 independent tumor samples when compared to the splenic marginal zone fractions. In the B-cell lineage, Trp53 deficiency leads to the dysregulation of multiple genes involved in key cellular signaling pathways, including the PI3K/MAPK pathway. In summary, pan hematopoietic deletion of Trp53 led to T-lineage lymphoma in young mice and myeloid tumors in older mice; with activation of Notch1 signaling in the former. B-cell specific deletion of Trp53 led to splenic marginal zone and diffuse B-cell lymphoma with transcriptional dysregulation of key signaling molecules. Hence, tumorigenesis by Trp53 deletion is tightly linked to lineage and appears to dysregulate key signaling pathways that are operant in those lineages, potentially identifying novel strategies for therapeutic interventions in P53 dependent human hematolymphoid malignancies. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Author(s):  
Patricia E Zerra ◽  
Seema R Patel ◽  
Ryan Philip Jajosky ◽  
Connie M Arthur ◽  
James W McCoy ◽  
...  

Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme and ovalbumin fused to human Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they co-localize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited IgM and IgG anti-HOD antibody formation, while CD4 T cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild type or MZ B cell deficient recipients, suggesting that IgG formation is not dependent on MZ B cell-mediated CD4 T cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response and no increase in antigen specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 162-162 ◽  
Author(s):  
Alexandra Traverse-Glehen ◽  
Aurelie Verney ◽  
Lucille Baseggio ◽  
Pascale Felman ◽  
Evelyne Callet-Bauchu ◽  
...  

Abstract Background and Objectives Splenic and nodal marginal zone B cell lymphoma (SMZL and NMZL) have been recently identified as distinct clinicopathological entities in the WHO classification. These lymphomas entities may have a common origin in the marginal B-cell compartment of the lymphoid organs. However the precise cell of origin of marginal zone B cells, its status in the B cell differentiation pathway and the mechanisms involved in lymphomagenesis remain unclear. The most widely held view is that marginal zone B cells are mostly memory B cells. But the origin of these cells, especially the transit through germinal center pathway, remains contradictory. Somatically mutated variable-region of immunoglobulin genes and bcl-6 gene represent at this time faithful markers for exposure to the germinal center. In addition, aberrant somatic hypermutations have been suggested to contribute to the development of B-cell lymphomas, occurring in the 5′ sequence of several proto-oncogenes. Interestingly those mutation do not occur in normal germinal center B cells. Design and Methods: IgVH, BCL-6, PIM1, Rho/TTF and PAX 5 genes, highly mutated in DLBCL and other indolent lymphoma such as B-CLL, were analysed for the presence of somatic mutations from 50 marginal zone lymphoma tissue and blood samples (21 NMZL and 29 SMZL including 10 cases with numerous villous lymphoma cells in peripheral blood). According to the morphological and immunophenotypical analysis, the fraction of malignant cells in the specimen was 70% or more in all cases. Mutational analysis was restricted to the regions previously shown to contain more than 95% of mutations in DLBCL. PCR products were directly sequenced on both sides and perfomed in duplicate in two independent reactions. Results: Out of 18 NMZL cases analysed for IgVH mutational status (3 cases not analysed for IgVH) 15 cases were mutated and 21 out of 28 in SMZL cases. Mutation of BCL-6 was detected in only 1 NMZL patients (1/21) and 1 SMZL patients (1/29). For RhoH/TTF, PIM1, PAX5 the mutation average was also low with only 1 case mutated per group and per gene, with a different case mutated in each for each gene. Conclusion In summary, we demonstrate the low frequency of aberrant somatic mutations in SMZL and NMZL, suggesting that this process is probably not a major contributor to lymphomageneis. However the frequent absence of mutation in BCL6 suggest a particular differentiation pathway, as suggested before in normal marginal zone B cells, possibly without transit through the germinal center. Interestingly the relatively high frequency of VH mutated cases compared with the frequent absence of mutation of BCL6, considered as a specific germinal center tag, could suggest somatic hypermutation outside the germinal center. In addition the absence of hypermutation could be linked with the absence of recurrent translocation in SMZL and NMZL, the translocation process haveing been associated with somatic hypermutation dysfunction.


2006 ◽  
Vol 203 (8) ◽  
pp. 1985-1998 ◽  
Author(s):  
Laura Mandik-Nayak ◽  
Jennifer Racz ◽  
Barry P. Sleckman ◽  
Paul M. Allen

In K/BxN mice, arthritis is induced by autoantibodies against glucose-6-phosphate-isomerase (GPI). To investigate B cell tolerance to GPI in nonautoimmune mice, we increased the GPI-reactive B cell frequency using a low affinity anti-GPI H chain transgene. Surprisingly, anti-GPI B cells were not tolerant to this ubiquitously expressed and circulating autoantigen. Instead, they were found in two functionally distinct compartments: an activated population in the splenic marginal zone (MZ) and an antigenically ignorant one in the recirculating follicular/lymph node (LN) pool. This difference in activation was due to increased autoantigen availability in the MZ. Importantly, the LN anti-GPI B cells remained functionally competent and could be induced to secrete autoantibodies in response to cognate T cell help in vitro and in vivo. Therefore, our study of low affinity autoreactive B cells reveals two distinct but potentially concurrent mechanisms for their activation, of which one is T cell dependent and the other is T cell independent.


Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1288-1294 ◽  
Author(s):  
Sang-Moo Kang ◽  
Maria Grazia Narducci ◽  
Cristina Lazzeri ◽  
Adriana M. Mongiovì ◽  
Elisabetta Caprini ◽  
...  

AbstractTCL1, the overexpression of which may result in T-cell leukemia, is normally expressed in early embryonic tissues, the ovary, and lymphoid lineage cells. Our analysis of mouse B-lineage cells indicates that Tcl1 expression is initiated in pro-B cells and persists in splenic marginal zone and follicular B cells. T-lineage Tcl1 expression begins in thymocyte progenitors, continues in CD4+CD8+ thymocytes, and is extinguished in mature T cells. In Tcl1-deficient mice, we found B lymphopoiesis to be compromised at the pre-B cell stage and T-cell lymphopoiesis to be impaired at the CD4+CD8+ thymocyte stage. A corresponding increase was observed in thymocyte susceptibility to anti-CD3ϵ–induced apoptosis. Reduced numbers of splenic follicular and germinal center B cells were accompanied by impaired production of immunoglobulin G1 (IgG1) and IgG2b antibodies in response to a T-dependent antigen. The marginal zone B cells and T-cell–independent antibody responses were also diminished in Tcl1-/- mice. This analysis indicates a significant role for Tcl1, a coactivator of Akt signaling, in normal T- and B-cell development and function.


2002 ◽  
Vol 9 (4) ◽  
pp. 187-195 ◽  
Author(s):  
Peter M. Dammers ◽  
Monique E. Lodewijk ◽  
André Zandvoort ◽  
Frans G. M. Kroese

Here we show that marginal zone (MZ)-B cells in rats can already be detected in neonatal spleen from two days after birth. At this time point, morphologically distinct MZs are not present yet and the vast majority of B cells in spleen are located in a concentric area surrounding the T cell zones (PALS). Before MZs are obviously detectable in spleen (14 days after birth), MZ-B cells seem to be enriched at the outer zones of the concentric B cell areas. Similar to adult rats, neonatal MZ-B cells are intermediate-sized cells that express high levels of surface (s)IgM and HIS57 antigen, and low levels of sIgD and CD45R (HIS24). We show here, however, that in contrast to adult MZ-B cells, MZ-B cells (and also recirculating follicular (RF)-B cells) in neonatal rats express higher levels of CD90 (Thy-1). In adult rats, expression of CD90 on the B cell lineage is confined to immature B cells. We speculate that the expression of CD90 on neonatal MZ-B cells may have implications for their responsiveness to polysaccharide (T cell-independent type 2) antigens.


Author(s):  
Deborah Dunn–Walters ◽  
Christian Thiede ◽  
Birgit Alpen ◽  
Jo Spencer

During the B–cell response to T–cell–dependent antigens, the B cells undergo a rapid proliferative phase in the germinal centre. This is accompanied by the introduction of mutations into the immunoglobulin (Ig) variable region (V) genes. The B cells are then selected according to the affinity of the encoded immunoglobulin for antigen, resulting in affinity maturation of the response. Analysis of mutations in IgV genes has given insight into the history of individual B cells and their malignancies. In most cases, analysis of mutations confirms classifications of B–cell lineage designated by studies of cellular morphology and surface antigen expression. However, of particular interest is the subdivision of groups of malignancies by analysis of somatic hypermutation. It is now apparent that there are two subsets of chronic lymphocytic leukaemia (CLL), one with a low load of mutations and poor prognosis, and one with a heavy load of mutations with a much more favourable prognosis. In addition, in Burkitt's lymphoma, sporadic and endemic subtypes are now considered possibly to have a different pathogenesis, reflected in differences in the numbers of mutations. Hodgkin's disease, which was a mystery for many years, has now been shown to be a B–cell tumour. Although in many cases the Ig genes are crippled by somatic hypermutation, it is thought that failure to express Ig is more likely to be associated with problems of transcription. It has been proposed that the distribution of mutations in a B–cell lymphoma can be used to determine whether a lymphoma is selected. We have investigated the load and distribution of mutations in one group of lymphomas–marginal zone B–cell lymphomas of mucosa–associated lymphoid tissues (MALT–type lymphoma), which are dependent on Helicobacter pylori for disease progression, to investigate the limits of information that can be derived from such studies. Comparison of the load of mutations demonstrates that these tumours have approximately the same load of mutations as normal mucosal marginal zone B cells from the Peyer's patches and mucosal plasma cells. This is consistent with the origin of these cells from mucosal marginal zone B cells with plasma cell differentiation. To investigate selection in MALT lymphomas we compared a region of the framework region three in ten MALT lymphomas which use the V H4 family, with the same codons in groups of V H4 genes that are out of frame between V and J. The latter accumulate mutations but are not used and are not selected. A group of V H4 genes are in–frame between V and J were also included for comparison. There were no obvious differences in the distribution of mutations between the groups of genes; the same hot spots and cold spots were apparent in each. In the MALT lymphomas, selection was apparent in the framework regions only and the tendency was to conserve. We therefore feel that there is selection to conserve antibody structure and that this does not reflect selection for antigen. We do not believe that antigen selection can be deduced reliably from sequence information alone. It is possible that somatic hypermutation could be a cause of malignancy since it has been shown that the process may generate DNA strand breaks and is known to be able to generate insertions and deletions. Such events may mediate the translocation of genes—a process that is pivotal in the evolution of many lymphomas.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 777-777
Author(s):  
Lizi Wu ◽  
Ivan Maillard ◽  
Makoto Nakamura ◽  
Warren S. Pear ◽  
James D. Griffin

Abstract Notch1 and Notch2 receptor-mediated signaling appear to have important and unique roles in lymphoid lineage commitment. Notch1 is required for T cell development, while Notch2 is essential for marginal zone B cell development. This specificity is not completely explained by differential expression patterns of Notch1 and 2 or Notch ligands, suggesting that there are other genes that contribute to specifying Notch receptor functions. We have previously shown that the MAML family of transcriptional co-activators is essential for Notch-induced transcriptional events, and functions by forming ternary complexes with Notch and the transcription factor CSL in the nucleus. This MAML family currently consists of three members, MAML1-3, all of which can function as co-activators for Notch receptors in vitro . In this study, we investigated the possibility that MAML1 co-activator contributes to determining Notch receptor function by generating mice deficient in the Maml1 gene. Maml1 -deficient mice fail to thrive and die within 10 days of birth. The morphology of marrow, nodes, and spleen was grossly intact. The ability of Maml1-deficient stem cells to generate different T and B lineages of lymphoid cells was determined by transplanting fetal liver cells isolated from E14.5 embryos into lethally irradiated wild-type recipient mice and analyzing donor-derived lymphoid cells 12 weeks post-transplantation. We found that the deletion of Maml1 results in complete loss of marginal zone B cell lineage (MZB, defined by B220+CD21hiCD23lo). Moreover, the number of MZB cells was reduced to about 50% in Maml1 -heterozygous fetal liver chimeras as compared to wild type controls. However, T cell development was largely unaffected, with only a modest but significant increase in the number of γδ T cells (about 2 fold) in both the thymus and the spleen. Therefore, these results suggest the unexpected finding that targeted deletion of Maml1 in hematopoietic cells is similar to the targeted deletion of either Notch2 or the Notch ligand, Delta-like 1 (Dll1) resulting in the loss of marginal zone B cells and minimal effects on T cell development. Moreover, the number of marginal zone B cells is correlated with Maml1 gene dosage, indicating haploinsufficiency. These data suggest that the Notch ligand Dll1 activates Notch2 signaling resulting in a Notch2/MAML1/CSL complex that is essential for marginal zone B cell development. Further studies with respect to relative expression levels of various MAML genes and interactions of MAML co-activators and Notch receptors may shed additional light into understanding how different Notch receptors regulate cell fate decisions in hematopoiesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2307-2307
Author(s):  
Abel Sanchez-Aguilera ◽  
Jose Cancelas ◽  
David A. Williams

Abstract RhoH is a GTPase-deficient, hematopoietic-specific member of the family of Rho GTPases (Li et al, 2002). RhoH has been described as regulating proliferation and engraftment of hematopoietic progenitor cells (Gu et al, 2005) and integrin-mediated adhesion in T cells (Cherry et al, 2004). Additionally, RhoH plays a critical role in T-cell development and T-cell receptor signaling (Gu et al, 2006; Dorn et al, 2007). However, the potential role of RhoH in the differentiation and biological functions of B cells are unknown. To answer these questions, we analyzed the B-cell phenotype of RhoH−/− mice and the in vitro properties of RhoH-deficient splenic B cells compared to their wild-type counterparts. RhoH−/− mice showed increased B-cell numbers in the bone marrow, mainly due to an increase in the number of pro-B, pre-B and immature B cells. In the spleen, lymph nodes and peripheral blood, RhoH−/− mice showed a significant decrease in the number of follicular (B-2) cells (B220+ CD93– IgDhigh CD21low). The number of splenic marginal zone B cells (B220+ CD93– IgDlow CD21high), plasma cells (CD93– CD38+ CD138+) in bone marrow and spleen, and B-1 cells (IgM+ CD5+) in peritoneal cavity were not significantly different from those in wild-type animals. These alterations have functional significance, since the serum concentrations of IgM and IgG1 were significantly lower in RhoH−/− mice. However, splenic B cells isolated from RhoH−/− mice did not show any significant differences in their in vitro activation by anti-IgM, CD40 ligation or IL-4 stimulation, nor did they differ in their proliferative response to lipopolysaccharide. In vitro migration of RhoH-deficient B cells in response to CXCL12 or CXCL13 was similar to that of wild-type B cells. Given the important role of RhoH in signal transduction downstream the T cell receptor, we investigated the possible role of RhoH in B cell receptor signaling. Although total splenic B cells from RhoH−/− mice showed markedly increased phosphorylation of SYK and ERK after anti-IgM stimulation compared to wild-type B cells, sorted populations of splenic B-2 and marginal zone B cells from RhoH−/− and wild-type animals did not differ in the activation of these kinases, suggesting that the observed difference can be attributed to the different cellular composition of the B cell compartment (i.e. B-2 vs marginal zone B cells) in RhoH−/− mice. These data imply that the phenotype observed in RhoH−/− mice may not reflect an intrinsic defect in B cells but may be attributed to crosstalk between B cells and other hematopoietic cell populations. Composition of B cell subsets in wild-type and RhoH−/− mice (total cell number ×106, ± standard deviation, N=9) Bone marrow Spleen (*) indicates p<0.05; (**), p<0.01; (***), p<0.005 RhoH+/+ RhoH−/− RhoH+/+ RhoH−/− total B cells 7.8±1.8 11.0±2.4 (**) total B cells 31.7±10.1 25.4±8.8 pro-B 0.12±0.03 0.15±0.04 (*) transitional 8.7±1.2 8.6±2.8 pre-B 2.6±0.6 3.8±0.8 (***) B-2 11.6±4.1 7.6±2.5 (*) immature 1.5±0.4 2.1±0.5 (*) marginal 3.2±1.1 3.9±1.6 mature 1.4±0.7 1.7±0.9


2009 ◽  
Vol 417 (3) ◽  
pp. 673-683 ◽  
Author(s):  
Munetoyo Toda ◽  
Risa Hisano ◽  
Hajime Yurugi ◽  
Kaoru Akita ◽  
Kouji Maruyama ◽  
...  

CD22 [Siglec-2 (sialic acid-binding, immunoglobulin-like lectin-2)], a negative regulator of B-cell signalling, binds to α2,6- sialic acid-linked glycoconjugates, including a sialyl-Tn antigen that is one of the typical tumour-associated carbohydrate antigens expressed on various mucins. Many epithelial tumours secrete mucins into tissues and/or the bloodstream. Mouse mammary adenocarcinoma cells, TA3-Ha, produce a mucin named epiglycanin, but a subline of them, TA3-St, does not. Epiglycanin binds to CD22 and inhibits B-cell signalling in vitro. The in vivo effect of mucins in the tumour-bearing state was investigated using these cell lines. It should be noted that splenic MZ (marginal zone) B-cells were dramatically reduced in the mice bearing TA3-Ha cells but not in those bearing TA3-St cells, this being consistent with the finding that the thymus-independent response was reduced in these mice. When the mucins were administered to normal mice, a portion of them was detected in the splenic MZ associated with the MZ B-cells. Furthermore, administration of mucins to normal mice clearly reduced the splenic MZ B-cells, similar to tumour-bearing mice. These results indicate that mucins in the bloodstream interacted with CD22, which led to impairment of the splenic MZ B-cells in the tumour-bearing state.


Sign in / Sign up

Export Citation Format

Share Document