scholarly journals Transcriptomic Profile Identifies Early Signatures of Immunoediting and a Potential Role for VISTA As a Molecular Target in Acute Myeloid Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4467-4467
Author(s):  
Simona Pagliuca ◽  
Carmelo Gurnari ◽  
Tariq Kewan ◽  
Waled Bahaj ◽  
Keman Zhang ◽  
...  

Abstract Immunotherapy-based regimens are now integrated in clinical practice for a wide range of cancers. However, responses to immunotherapy are inconsistent across the neoplastic spectrum. To this end, a deep characterization of intra-tumor immune architecture is essential for identifying subsets of patients who can benefit from checkpoint inhibitors and other immunomodulatory treatments. V-domain Ig suppressor of T-cell activation (VISTA) has recently been recognized as a key negative immune regulator of anti-tumor immune response and is gaining growing interest as a potential pharmacological target. This molecule can work either as a receptor or as a ligand, is highly expressed in hematopoietic stem cells and myeloid compartment (Fig.1A) and has been found upmodulated in acute myeloid leukemia (AML). 1 However, despite those features, and its compelling role as a mediator of immune escape in cancer, VISTA-associated immune features are relatively unexplored in myeloid malignancies. Herein, we conducted a large multi-omics study, investigating the transcriptomic and genetic signatures associated with VISTA expression in a large publicly available dataset of patients with AML 2 with the purpose of potentially inspiring selective molecular targeted therapies in defined subsets of patients. VISTA was found upregulated in 285 samples from AML patients at diagnosis compared to 33 specimens from healthy controls (HC) (Fig.1B) highlighting its dysregulation at disease onset. When exploring distinct AML subtypes, we observed a pattern reflecting the expression reported in normal myelopoiesis stages, with higher expression levels in myelomonocytic and monocytic subsets and lower levels in promyelocytic leukemia (Fig.1A,B). Accordingly, genomic aberrations associated with higher VISTA expression were more commonly NPM1 mutations and MLLT3-KTM2A gene fusions both enriching M4 and M5 morphologic subgroups respectively (Fig.1C, D). This pattern was also confirmed in a panel of human leukemia cell lines (Fig.1E). Based on the 75%ile of VISTA mRNA expression in HC, we categorized patients in high (N=139) and low (N=146) expressors and performed a differential analysis between the two groups. High VISTA expressors showed a striking enrichment in genes involved in immune activation with upregulation of antigen presentation and processing pathways, cytokine and interleukine signaling, toll-like receptor cascade, NK cytotoxicity and response to interferon (Fig.1F,G). Based on these findings, we reasoned that VISTA hyperexpression could arise from two possible mechanisms: I) a paraphenomenon of the enrichment in blasts with particular morphologic features, II) a feedback response to the initial immune activation against leukemic blasts, in patients with higher immunoediting potential, representing an early marker of immune pressure, shaping leukemia ontogeny. To further test this last hypothesis, we analyzed the correlation between VISTA expression and the mutational burden present in those AML specimens and found that high VISTA expression inversely correlated with the number of somatic hits acquired at diagnosis (Fig.1H). Consistent with lessons inherited from tumor biology, this result potentially indicates that VISTA hyperexpression counteracts immunoediting mechanisms that, in an initial phase, sculpt the oncogenic potential of leukemic blasts, selecting clones with lower neoantigenic burden. This phase of immune activation and elimination, is ideally followed by an equilibrium and escape stage, in which regulatory negative mechanisms arise, ultimately facilitating leukemic progression. Of note is that unbiased differential analysis of the same AML subset compared to HC did not identify upregulation in any other antigen presenting cell-associated checkpoint negative regulators, including PDL1. Altogether those findings pinpoint the role of VISTA as early marker of immune activation and potentially a feedback mechanism that ultimately may promote immune escape in AML. Targeting VISTA may be an effective approach for controlling disease recurrence and treatment resistance in molecularly defined subgroups of AML. Ongoing experiments and analysis of immunogenomic players of immune escape in the setting of allogenic stem cell transplantation will clarify the role of VISTA in mediating AML relapse and evasion from graft versus leukemia effect. Figure 1 Figure 1. Disclosures Maciejewski: Regeneron: Consultancy; Novartis: Consultancy; Bristol Myers Squibb/Celgene: Consultancy; Alexion: Consultancy.

Blood ◽  
2021 ◽  
Author(s):  
Amanda G Davis ◽  
Daniel T. Johnson ◽  
Dinghai Zheng ◽  
Ruijia Wang ◽  
Nathan D. Jayne ◽  
...  

Post-transcriptional regulation has emerged as a driver for leukemia development and an avenue for therapeutic targeting. Among post-transcriptional processes, alternative polyadenylation (APA) is globally dysregulated across cancer types. However, limited studies have focused on the prevalence and role of APA in myeloid leukemia. Furthermore, it is poorly understood how altered poly(A) site (PAS) usage of individual genes contributes to malignancy or whether targeting global APA patterns might alter oncogenic potential. In this study, we examined global APA dysregulation in acute myeloid leukemia (AML) patients by performing 3' Region Extraction And Deep Sequencing (3'READS) on a subset of AML patient samples along with healthy hematopoietic stem and progenitor cells (HSPCs) and by analyzing publicly available data from a broad AML patient cohort. We show that patient cells exhibit global 3' untranslated region (UTR) shortening and coding sequence (CDS) lengthening due to differences in PAS usage. Among APA regulators, expression of FIP1L1, one of the core cleavage and polyadenylation factors, correlated with the degree of APA dysregulation in our 3'READS dataset. Targeting global APA by FIP1L1 knockdown reversed the global trends seen in patients. Importantly, FIP1L1 knockdown induced differentiation of t(8;21) cells by promoting 3'UTR lengthening and downregulation of the fusion oncoprotein AML1-ETO. In non-t(8;21) cells, FIP1L1 knockdown also promoted differentiation by attenuating mTORC1 signaling and reducing MYC protein levels. Our study provides mechanistic insights into the role of APA in AML pathogenesis and indicates that targeting global APA patterns can overcome the differentiation block of AML patients.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1835-1835
Author(s):  
Fenghua Qian ◽  
Fenghua Qian ◽  
Diwakar Tukaramrao ◽  
Jiayan Zhou ◽  
Nicole Palmiero ◽  
...  

Abstract Objectives The relapse of acute myeloid leukemia (AML) remains a significant concern due to persistent leukemia stem cells (LSCs) that are not targeted by existing therapies. LSCs show sensitivity to endogenous cyclopentenone prostaglandin J (CyPG) metabolites that are increased by dietary trace element selenium (Se), which is significantly decreased in AML patients. We investigated the anti-leukemic effect of Se supplementation in AML via mechanisms involving the activation of the membrane-bound G-protein coupled receptor 44 (Gpr44) and the intracellular receptor, peroxisome proliferator-activated receptor gamma (PPARγ), by endogenous CyPGs. Methods A murine model of AML generated by transplantation of hematopoietic stem cells (HSCs- WT or Gpr44−/−) expressing human MLL-AF9 fusion oncoprotein, in the following experiments: To investigate the effect of Se supplementation on the outcome of AML, donor mice were maintained on either Se-adequate (Se-A; 0.08–0.1 ppm Se) or Se-supplemented (Se-S; 0.4 ppm Se) diets. Complete cell counts in peripheral blood were analyzed by hemavet. LSCs in bone marrow and spleen were analyzed by flow cytometry. To determine the role of Gpr44 activation in AML, mice were treated with Gpr44 agonists, CyPGs. LSCs in bone marrow and spleen were analyzed. Mice transplanted with Gpr44−/- AML cells were compared with mice transplanted with wild type AML cells and the progression of the disease was followed as above. To determine the role of PPARγ activation in AML, PPARγ agonist (Rosiglitazone, 6 mg/kg, i.p, 14 d) and antagonist (GW9662, 1 mg/kg, i.p. once every other day, 7 injections) were applied to Se-S mice transplanted with Gpr44−/- AML cells and disease progression was followed. Results Se supplementation at supraphysiological levels alleviated the disease via the elimination of LSCs in a murine model of AML. CyPGs induced by Se supplementation mediate the apoptosis in LSCs via the activation of Gpr44 and PPARγ. Conclusions Endogenous CyPGs produced upon supplementation with Se at supraphysiological levels improved the outcome of AML by targeting LSCs to apoptosis via the activation of two receptors, Gpr44 and PPARg. Funding Sources NIH DK 07,7152; CA 175,576; CA 162,665. Office of Dietary Supplements, USDA Hatch funds PEN04605, Accession # 1,010,021 (KSP, RFP).


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 683-683
Author(s):  
Christopher Y. Park ◽  
Yoon-Chi Han ◽  
Govind Bhagat ◽  
Jian-Bing Fan ◽  
Irving L Weissman ◽  
...  

Abstract microRNAs (miRNAs) are short, non-protein encoding RNAs that bind to the 3′UTR’s of target mRNAs and negatively regulate gene expression by facilitating mRNA degradation or translational inhibition. Aberrant miRNA expression is well-documented in both solid and hematopoietic malignancies, and a number of recent miRNA profiling studies have identified miRNAs associated with specific human acute myeloid leukemia (AML) cytogenetic groups as well as miRNAs that may prognosticate clinical outcomes in AML patients. Unfortunately, these studies do not directly address the functional role of miRNAs in AML. In fact, there is no direct functional evidence that miRNAs are required for AML development or maintenance. Herein, we report on our recent efforts to elucidate the role of miRNAs in AML stem cells. miRNA expression profiling of AML stem cells and their normal counterparts, hematopoietic stem cells (HSC) and committed progenitors, reveals that miR-29a is highly expressed in human hematopoietic stem cells (HSC) and human AML relative to normal committed progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors is sufficient to induce a myeloproliferative disorder (MPD) that progresses to AML. During the MPD phase of the disease, miR-29a alters the composition of committed myeloid progenitors, significantly expedites cell cycle progression, and promotes proliferation of hematopoietic progenitors at the level of the multipotent progenitor (MPP). These changes are manifested pathologically by marked granulocytic and megakaryocytic hyperplasia with hepatosplenomegaly. Mice with miR-29a-induced MPD uniformly progress to an AML that contains a leukemia stem cell (LSC) population that can serially transplant disease with as few as 20 purified LSC. Gene expression analysis reveals multiple tumor suppressors and cell cycle regulators downregulated in miR-29a expressing cells compared to wild type. We have demonstrated that one of these genes, Hbp1, is a bona fide miR-29a target, but knockdown of Hbp1 in vivo does not recapitulate the miR-29a phenotype. These data indicate that additional genes are required for miR-29a’s leukemogenic activity. In summary, our data demonstrate that miR-29a regulates early events in normal hematopoiesis and promotes myeloid differentiation and expansion. Moreover, they establish that misexpression of a single miRNA is sufficient to drive leukemogenesis, suggesting that therapeutic targeting of miRNAs may be an effective means of treating myeloid leukemias.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1356-1356
Author(s):  
Giulia Daniele ◽  
Clelia Tiziana Storlazzi ◽  
Cristina Papayannidis ◽  
Ilaria Iacobucci ◽  
Angelo Lonoce ◽  
...  

Abstract We describe a new AML entity, occurring in 30% of de novo acute myeloid leukemia, due to structural and epigenetic deregulation of the UNCX homeobox (HB) gene. By molecular approaches, we identified a M5 AML patient with a t(7;10)(p22;p14) translocation as the sole cytogenetic anomaly and showing ectopic expression of UNCX (7p22.3), which encode for a transcription factor involved in somitogenesis and neurogenesis. Since UNCX was never reported in association with cancer but only with common myeloid cell proliferation and regulation of cell differentiation, we decided to investigate its contribution to leukemogenesis. We observed UNCX ectopic expression in 32.3% (20/62) and in 8% (6/75) of acute myeloid leukemia (AML) patients and cell lines, respectively. Notably, retroviral-mediated UNCX transfer in CD34+ HSCs induced a slow-down in their proliferation and differentiation and transduced cells showed a lower growth rate but a higher percentage of CD34+ stem cells in liquid culture than controls. Additionally, UNCX infected cells displayed a decrease of MAP2K1 proliferation marker but increase of KLF4, HOXA10, and CCNA1, associated with impaired differentiation and pluripotency. Similarly, UNCX-positive patients revealed alteration of gene pathways involved in proliferation, cell cycle control and hematopoiesis. Since HB genes encode for transcription factors showing a crucial role in normal hematopoiesis and in leukemogenesis, we focused our attention on the role of altered UNCX expression level. Of note, its murine ortholog, (Uncx) was previously described as embedded within a low-methylated regions (≤ 10%) called "canyon" and dysregulated in murine hematopoietic stem cells (HSCs) as a consequence of altered methylation at canyons edges (borders) due to Dnmt3a inactivation. In our hands, UNCX activation was accompanied by methylation changes at both its canyon borders, clearly indicating an epigenetic regulation of this gene, although not induced by DNMT3A mutations. Clinical parameters and correlation with response to therapy will be presented. Taken together, our results indicate that more than 30% of de novo AML have a novel entity with a putative leukemogenic role of UNCX, whose activation may be ascribed to epigenetic regulators. Acknowledgments: MG, CP, GS, and AP(2) and this work was supported by ELN, AIL, AIRC, progetto Regione-Università 2010-12 (L. Bolondi), Fondazione del Monte di Bologna e Ravenna, FP7 NGS-PTL project. CTS, GD and AL are supported by Associazione Italiana Ricerca sul Cancro (AIRC) funding. Disclosures Nadarajah: MLL Munich Leukemia Laboratory: Employment. Martinelli:MSD: Consultancy; Novartis: Consultancy, Speakers Bureau; Ariad: Consultancy; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; AMGEN: Consultancy; ROCHE: Consultancy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3373-3373
Author(s):  
Sheng-Chieh Chou ◽  
Jih-Luh Tang ◽  
Liang-In Lin ◽  
Hsin-An Hou ◽  
Chien-Yuan Chen ◽  
...  

Abstract Abstract 3373 Poster Board III-261 Purpose Several gene mutations had been found to have clinical implications in patients with acute myeloid leukemia (AML), especially in those with normal karyotype. However, the role of such gene mutations for AML patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) was unclear and inconclusive. We retrospectively evaluated the prognostic impact of 8 gene mutations in adult AML patients undergoing allo-HSCT. Materials & Methods From 1995 to 2007, a total of 463 consecutive adult patients with de novo non-M3 AML had comprehensive gene mutation analyses at the National Taiwan University Hospital. Three hundred and twenty five patients who received conventional induction chemotherapy were enrolled in this study. Those who received only low dose chemotherapy or palliative treatment were excluded. The genetic alterations analyzed included NPM1, FLT3/ITD, FLT3/TKD, CEBPA, AML1/RUNX1, RAS, MLL/PTD, and WT1. The clinical implication of these genetic alterations in the patients receiving allo-HSCT was analyzed, and the result was compared with that in patients without allo-HSCT. Results The clinical characteristics in the patients receiving allo-HSCT (n=100) and those without (n=225) were similar with the exception of age, being younger in the former group (35.4 years vs. 49.5 years p<0.001). In univariate analysis, older age (Age > 45 years), higher initial WBC count (WBC>50K/μL), elevated LDH level, unfavorable karyotype, FLT3/ITD, mutations of AML1/RUNX1 were significantly associated with poorer overall survival (OS) in patients not receiving allo-HSCT; While NPM1mut/FLT3ITDneg and CEBPA mutations served as significantly good prognostic indicators. In multivariate analysis, age, WBC count, karyotype, FLT3/ITD, AML1/RUNX1, CEBPA and NPM1mut/FLT3ITDneg remained to be independent prognostic factors in non-allo-HSCT patients. However, in patients receiving allo-HSCT, only unfavorable karyotype and disease status (refractory or remission) at the time of transplantation were associated with poorer OS both in univariate and multivariate analyses. The similar prognostic impact of FLT3/ITD, CEBPA, AML1/RUNX1 and NPM1 on OS was not seen in patients receiving allo-HSCT. Furthermore, in contrast to its poor prognostic impact in non-allo-HSCT patients, mutation of AML1/RUNX1 was a significant good prognostic factor for relapse free survival (p=0.046), although not for OS, in allo-HSCT group. Conclusion FLT3/ITD, mutations of AML1/RUNX1, CEBPA and NPM1 have great prognostic implication for OS in AML patients not receiving allo-HSCT. However, their impact on OS is ameliorated in patients receiving allo-HSCT. The results need to be confirmed by further studies on more patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3574-3574
Author(s):  
Claudia Oancea ◽  
Maria Heinßmann ◽  
Nathalie Guillen ◽  
Oliver G. Ottmann ◽  
Martin Ruthardt

Abstract The t(6,9)(p23,q34) translocation occurs in 1-5% of adult patients with acute myeloid leukemia (AML). It is associated with a poor prognosis and defines a high risk group of AML in the WHO classification. The t(6;9) is in most of the cases the only cytogenetic aberration at diagnosis. The hallmark of t(6;9)-positive AML is the DEK/CAN fusion protein. DEK/CAN is a leukemogenic oncogene, but little is known about the molecular mechanism of DEK/CAN-induced leukemogenesis. The 165 kDa DEK/CAN phosphoprotein is encoded by a single transcript of 5.5Kb. The DEK portion of the DEK/CAN contains all the major functional domains of DEK mediating DNA-binding and multimerization. DEK increases life span of primary cells in culture by inhibiting cellular senescence and apoptosis. Post-translational modifications of DEK, mainly phosphorylation, influence the activity of DEK; unphosphorylated DEK has a higher affinity for DNA than the phosphorylated form, which in turn has a higher ability for multimerization. The main kinases that phosphorylate DEK are Glycogen synthase kinase 3 β (GSK3β) and Casein kinase 2 (CK2). The respective phosphorylation sites are conserved in the DEK portion of DEK/CAN. However, little is known about the role of phosphorylation for the biological functions of DEK/CAN. Therefore we generated several mutants of DEK and DEK/CAN by point-mutating the putative GSK3β-sites (ΔP1) from S to A and by deleting the CK2 sites in addition to these mutations (ΔP2). The reduction of S/T phosphorylation was confirmed by a ProQ staining and affinity chromatography on lysates of 293T cells expressing DEK, DEK/CAN and the respective ΔP1 or ΔP2 mutants. Further biological and biochemical consequences of these mutations for DEK and DEK/CAN were investigated in murine factor dependent 32D progenitor cells and in primary murine Sca1+/lin- hematopoietic stem cells (HSC), retrovirally or lentivirally transduced with DEK, DEK/CAN and/or their phosphorylation mutants ΔP1 or ΔP2, respectively. Here we report that the loss of the GSK3β- and CK2-phosphorylation sites did not interfere with the subnuclear localization of either DEK or DEK/CAN as revealed either by subnuclear fractionation experiments or by co-localization with native DEK/CAN in confocal laser scan microscopy assays on 32D cells co-expressing DEK/CAN and ΔP1-DEK/CAN or ΔP2-DEK/CAN. In contrast, the destruction of GSK3β-phosphorylation sites not only led to a loss of apoptosis inhibition by DEK and DEK/CAN upon factor withdrawal in 32D cells, but also abolished the increased self renewal potential of DEK/CAN-positive HSC. In fact DEK/CAN-positive HSCs significantly increased colony numbers in colony forming units spleen-day 12 (CFU-S12) assays as compared to empty vector controls, whereas ΔP1-DEK/CAN and ΔP2-DEK/CAN did not have any effect. In summary, our results suggest an important role of the GSK3β-phosphorylation for the DEK/CAN-induced leukemogenesis, which establishes the GSK3β-activity as a molecular target for therapeutic intervention in t(6;9)-positive AML. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document