scholarly journals Intravenous Nanomedicine for Targeted Delivery of Thrombin to Augment Hemostasis

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1029-1029
Author(s):  
Anirban Sen Gupta ◽  
Aditya Girish ◽  
Ketan Jolly ◽  
Maria de la Fuente ◽  
Xu Han ◽  
...  

Abstract Non-compressible uncontrolled hemorrhage remains a major cause of mortality from traumatic injuries. Additionally, patients with congenital, disease-associated or drug-induced hemostatic dysfunctions, may often be at risk of excessive bleeding. Therefore, treatments that render rapid hemostasis are clinically significant in potentially saving lives. The clinical gold standard for this is the transfusion of whole blood (WB) or blood components (e.g. controlled ratios of platelets, RBCs, and plasma), as evidenced by several clinical studies (e.g. PROPPR, PROMMTT and PAMPer). However, the availability of such blood products is donor-dependent, their shelf-life is limited due to contamination risks, and, their portability and storage is often challenging. While extensive research efforts are currently being focused on addressing these challenges, e.g. using low titer Group O whole blood, cold-storage and freeze-drying of platelets and plasma, in vitro generation of platelets from iPSCs etc., a parallel research focus has emerged in designing biomaterials-based I.V.-administrable technologies (nanoparticles, polymers etc.) that can provide specific functional attributes of hemostasis while allowing donor-independent manufacturing, scale-up, and on-demand availability. Prominent examples of these are 'synthetic platelet' (SynthoPlate) nanoparticles that recapitulate platelet's binding interactions with von Willebrand Factor (vWF), collagen and active platelet integrin GPIIb-IIIa, flexible platelet-like particles (PLP) that bind fibrin to recapitulate platelet's biomechanical properties, fibrinogen function-mimicking nanoparticles that amplify the aggregation of active platelets, peptide-modified synthetic polymers (e.g. PolySTAT, HAPPI etc.) that render clot stabilization etc. In this framework, we present the design and evaluation of I.V.-administrable unique platelet-inspired nanoparticles that render injury site-targeted, enzyme-responsive direct delivery of thrombin, to site-specifically augment fibrin generation for hemostasis. Our design is inspired by platelets' crucial hemostatic mechanisms of : (i) rapidly accumulating at the injury site to form a plug and (ii) serving as a coagulation amplifier via presenting anionic phospholipids on the activated platelet surface to render tenase and prothrombinase factor assemblies leading to thrombin (FIIa) burst, which can then site-specifically convert fibrinogen to fibrin. Thrombin delivery to augment hemostasis is clinically well-accepted, as exemplified by products like Tisseel where thrombin and fibrinogen are co-delivered by syringe directly at wound site. Researchers have also studied thrombin-loaded topical dressings and topical administration of thrombin-loaded particles on wounds to mitigate bleeding, but these cannot be used intravenously. A recent interesting study has explored encapsulation of thrombin-loaded nanoparticles inside actual platelets with the idea of the particles being released (analogous to granule secretion) upon platelet activation, but this was only demonstrated in vitro because optimizing this complex strategy for consistent in vivo function may be challenging. Our approach circumvents these challenges by: (i) loading consistent amount of thrombin in I.V.-administrable lipid nanoparticles (LNPs), (ii) directly targeting the thrombin-loaded LNPs (TLNPs) to the injury site via specific binding to vWF and collagen, and (iii) releasing the loaded thrombin via particle destabilization by the action of injury site-specific enzyme phospholipase A2 for in situ fibrin production. We evaluated the TLNPs in vitro in human blood and plasma where hemostatic defects were created by platelet depletion and anticoagulant treatment. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM) based studies of clot characteristics and BioFlux microfluidics based real-time imaging of fibrin generation under simulated vascular flow conditions, confirmed the ability of TLNPs to restore fibrin generation in hemostatic dysfunction settings. Subsequently, the in vivo feasibility of these TLNPs was tested in a mouse tail-clip bleeding model where a combination of platelet depletion plus anticoagulant treatment was used to render significant hemostatic defect. TLNPs were able to effectively reduce tail-bleeding in mice. Figure 1 Figure 1. Disclosures Sen Gupta: Haima Therapeutics: Other: Co-founder, Patents & Royalties: US 9107845, US 9107963.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2141-2141
Author(s):  
Andrew L. Frelinger ◽  
Joseph A. Jakubowski ◽  
Julie K. Brooks ◽  
Anu Nigam ◽  
Michelle A. Berny-Lang ◽  
...  

Abstract Abstract 2141 Introduction: In patients with sickle cell disease (SCD), erythrocytes contribute to microvessel occlusion resulting in tissue damage and platelet activation. Platelet activation, aggregation, local thrombus formation and platelet activation-dependent leukocyte recruitment potentially amplify tissue ischemia. Antiplatelet therapy may therefore be useful in SCD. Here we evaluate levels of platelet activation markers in adolescents with SCD vs. normal controls and the effect of in vitro blockade of the platelet ADP receptor P2Y12 by prasugrel's active metabolite, R-138727. Methods: Blood was obtained from adolescents (10 – 18 yr) with SCD and healthy adult subjects. Platelet function was evaluated by: light transmission aggregation (LTA) in platelet-rich plasma with 20 μM ADP and in whole blood by VerifyNow P2Y12; Multiple Electrode Aggregometry (MEA) with 6.5 μM ADP; vasodilator stimulated phosphoprotein (VASP) P2Y12 assay; and whole blood flow cytometric analysis of basal and in vitro ADP-stimulated levels of platelet surface activated GPIIb-IIIa (reported by monoclonal antibody PAC1) and P-selectin, platelet-monocyte aggregates (PMA) and platelet-neutrophil aggregates (PNA). These endpoints were also evaluated after in vitro incubation of whole blood with R-138727 (0.1 – 10 μM). Results: In SCD patients compared with normal subjects, circulating PMA and PNA levels were significantly higher (76.5 ± 20.3% and 55.1 ± 21.8% vs. 20.1 ± 7% and 13.9 ± 4.2% [mean ± SD], respectively, p<0.0001 for both), and in vitro ADP-stimulated platelet surface activated GPIIb-IIIa and P-selectin levels (mean fluorescence, MFI) were significantly lower (128.7 ± 66.2 and 78.1 ± 11.5 vs. 257.3 ± 50.8 and 91.6 ± 5.8, p<0.05 for both). ADP-stimulated platelet aggregation by LTA, VerifyNow and MEA, did not significantly differ between SCD and normal subjects, although whole blood platelet aggregation by MEA and VerifyNow tended to be greater in blood from SCD patients (92.5 vs. 70.4 AU, p=0.064 and 362.9 vs. 314.8 PRU, p=0.488, respectively). Treatment of whole blood in vitro with R-138727 resulted in a concentration-dependent inhibition of platelet function in both SCD patients and normal subjects. However, compared with normal subjects, the IC50 in SCD subjects was significantly lower for LTA but significantly higher for VerifyNow and VASP (Table). R-138727 inhibition of platelet function in SCD patients was similar to normal subjects as judged by MEA, whole blood flow cytometry for ADP-stimulated platelet surface P-selectin and activated GPIIb-IIIa expression, and % PMAs (Table). Sensitivity to R-138727 inhibition in SCD patient blood was greatest as measured by ADP-stimulated platelet surface P-selectin MFI, LTA, and MEA, less with ADP-stimulated platelet surface activated GPIIb-IIIa, and least with VASP, VerifyNow P2Y12 and % P-selectin-positive platelets (Table). Conclusions: 1) The markedly higher circulating PMA and PNA levels in SCD patients relative to normal donors demonstrates increased in vivo platelet activation in SCD patients and suggests that PMA and PNA may be useful markers of the in vivo pharmacodynamic effects of antiplatelet therapy in SCD patients. 2) Blockade of platelet P2Y12 with R-138727 produces dose-dependent inhibition of platelet function in SCD platelets. 3) Assay-dependent differences in IC50 values between SCD patients and normal donors suggest the presence of additional variables that affect these measures of platelet function. Further studies are needed to determine the relationship between platelet inhibition measured by these assays and clinical events in SCD patients. Disclosures: Frelinger: GLSynthesis: Research Funding; Lilly/Daiichi Sankyo: Consultancy, Research Funding; Takeda: Research Funding. Jakubowski:Eli Lilly and Company: Employment, Equity Ownership. Heeney:Lilly: Consultancy. Michelson:GLSynthesis: Research Funding; Lilly/Daiichi Sankyo: Data Monitoring Committee for clinical trial, Research Funding; Takeda: Research Funding.


Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 770-779 ◽  
Author(s):  
AD Michelson ◽  
PA Ellis ◽  
MR Barnard ◽  
GB Matic ◽  
AF Viles ◽  
...  

Abstract In washed platelet systems, thrombin has been demonstrated to downregulate the platelet surface expression of glycoprotein (GP) Ib and GPIX. In the present study, we addressed the question as to whether, in the more physiologic milieu of whole blood, downregulation of platelet surface GPIb and GPIX can be induced by thrombin, adenosine diphosphate (ADP), and/or by an in vivo wound. Thrombin-induced downregulation of GPIb and GPIX on the surface of individual platelets in whole blood was demonstrated by the use of flow cytometry, a panel of monoclonal antibodies (MoAbs) and, to inhibit fibrin polymerization, the peptide glycyl-L-prolyl-L-arginyl-L-proline. Platelets were identified in whole blood by a GPIV-specific MoAb and exclusion of monocytes by light scattering properties. Flow cytometric analysis of whole blood emerging from a standardized bleeding-time wound established that downregulation of platelet surface GPIb and GPIX can occur in vivo. A GPIb-IX complex-specific antibody indicated that the GPIb and GPIX remaining on the surface of platelets activated in vivo or in vitro were fully complexed. Simultaneous analysis of individual platelets by two fluorophores demonstrated that thrombin-induced platelet surface exposure of GMP-140 (degranulation) was nearly complete at the time that downregulation of platelet surface GPIb-IX was initiated. However, degranulation was not a prerequisite because ADP downregulated platelet surface GPIb-IX without exposing GMP-140 on the platelet surface. Inhibitory effects of cytochalasins demonstrated that the activation-induced downregulation of both GPIX and GPIb are dependent on actin polymerization. In summary, downregulation of the platelet surface GPIb-IX complex occurs in whole blood stimulated by thrombin, ADP, or an in vivo wound, and is independent of alpha granule secretion.


1994 ◽  
Vol 71 (05) ◽  
pp. 633-640 ◽  
Author(s):  
Alan D Michelson ◽  
Hollace MacGregor ◽  
Marc R Barnard ◽  
Anita S Kestin ◽  
Michael J Rohrer ◽  
...  

SummaryA hypothermia-induced hemorrhagic diathesis is associated with cardiopulmonary bypass, major surgery, and multiple trauma, but its pathophysiological basis is not well understood. We examined the hypothesis that hypothermia reversibly inhibits human platelet activation in vitro and in vivo. Platelet activation was studied in normal volunteers by whole blood flow cytometric analysis of modulation of platelet surface GMP-140 and the glycoprotein (GP) Ib-IX complex in: a) shed blood emerging from a standardized in vivo bleeding time wound; b) peripheral blood activated in vitro with either thrombin (in the presence of gly-pro-arg-pro, an inhibitor of fibrin polymerization) or the stable thromboxane (TX) A2 analogue U46619. Platelets in peripheral whole blood were activated at temperatures between 22° C and 37° C. the forearm skin temperature was maintained at temperatures between 22° C and 37° C prior to and during the bleeding time incision. Platelet aggregation was studied in shed blood by flow cytometry and in peripheral blood by aggregometry. Generation of TXB 2 (the stable metabolite of TXA 2) was determined by radioimmunoassay. In vitro, hypothermia inhibited both thrombin- and U46619-induced upregulation of GMP-140, downregulation of the GPIb-IX complex, platelet aggregation, and TXB2 generation. These inhibitory effects of hypothermia were all completely reversed by rewarming the blood to 37° C. In vivo, platelet activation was inhibited by hypothermia as shown by 5 independent assays of shed blood: upregulation of GMP-140, downregulation of the GPIb-IX complex, platelet aggregate formation, TXB 2 ggeneration, and the bleeding time. In summary, by a combination of immunologic, biochemical, and functional assays, we demonstrate that hypothermia inhibits human platelet activation in whole blood in vitro and in vivo. Rewarming hypothermic blood completely reverses the activation defect. These results suggest that maintaining normothermia or rewarming a hypothermic bleeding patient may reduce the need for platelet transfusions.


Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 770-779 ◽  
Author(s):  
AD Michelson ◽  
PA Ellis ◽  
MR Barnard ◽  
GB Matic ◽  
AF Viles ◽  
...  

In washed platelet systems, thrombin has been demonstrated to downregulate the platelet surface expression of glycoprotein (GP) Ib and GPIX. In the present study, we addressed the question as to whether, in the more physiologic milieu of whole blood, downregulation of platelet surface GPIb and GPIX can be induced by thrombin, adenosine diphosphate (ADP), and/or by an in vivo wound. Thrombin-induced downregulation of GPIb and GPIX on the surface of individual platelets in whole blood was demonstrated by the use of flow cytometry, a panel of monoclonal antibodies (MoAbs) and, to inhibit fibrin polymerization, the peptide glycyl-L-prolyl-L-arginyl-L-proline. Platelets were identified in whole blood by a GPIV-specific MoAb and exclusion of monocytes by light scattering properties. Flow cytometric analysis of whole blood emerging from a standardized bleeding-time wound established that downregulation of platelet surface GPIb and GPIX can occur in vivo. A GPIb-IX complex-specific antibody indicated that the GPIb and GPIX remaining on the surface of platelets activated in vivo or in vitro were fully complexed. Simultaneous analysis of individual platelets by two fluorophores demonstrated that thrombin-induced platelet surface exposure of GMP-140 (degranulation) was nearly complete at the time that downregulation of platelet surface GPIb-IX was initiated. However, degranulation was not a prerequisite because ADP downregulated platelet surface GPIb-IX without exposing GMP-140 on the platelet surface. Inhibitory effects of cytochalasins demonstrated that the activation-induced downregulation of both GPIX and GPIb are dependent on actin polymerization. In summary, downregulation of the platelet surface GPIb-IX complex occurs in whole blood stimulated by thrombin, ADP, or an in vivo wound, and is independent of alpha granule secretion.


1963 ◽  
Vol 09 (03) ◽  
pp. 512-524 ◽  
Author(s):  
Chava Kirschmann ◽  
Sara Aloof ◽  
Andre de Vries

SummaryLysolecithin is adsorbed to washed blood platelets and, at sufficient concentration, lyses them, inhibits their clot-retracting activity and promotes their thromboplastin-generating activity. Lysolecithin adsorption to the platelet was studied by using P32-labelled lysolecithin obtained from the liver of rats injected with labelled orthophosphate. The amount of lysolecithin adsorbed to the surface of the washed platelet in saline medium is dependent on the concentration of lysolecithin in solution and reaches saturation — 5 × 10-8 jig per platelet — at a concentration of 9—10 µg per ml. Platelet lysis in saline medium begins at a lysolecithin concentration higher than 18 jig per ml. Plasma and albumin prevent adsorption of lysolecithin to the platelet and protect the platelet from damage by lysolecithin. Albumin is able to remove previously adsorbed lysolecithin from the platelet surface. The protective action of plasma explains the lack of platelet damage in blood, the plasma lecithin of which has been converted to lysolecithin by the action of Vipera palestinae venom phosphatidase, in vitro and in vivo.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Transfusion ◽  
2021 ◽  
Vol 61 (S1) ◽  
Author(s):  
Turid Helen Felli Lunde ◽  
Lindsay Hartson ◽  
Shawn Lawrence Bailey ◽  
Tor Audun Hervig
Keyword(s):  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1347.2-1347
Author(s):  
S. Y. Ki ◽  
H. Shin ◽  
Y. Lee ◽  
H. R. Bak ◽  
H. Yu ◽  
...  

Background:Janus kinases (JAK1, JAK2, JAK3, and TYK2) play critical roles in mediating various cytokine signaling, and has been developed as a target for autoimmune diseases such as RA. Tofacitinib, oral Pan-JAK inhibitor, demonstrated efficacy in RA patients, but its widespread use is limited by safety issues. Baricitinib, JAK1/2 inhibitor, is also known to interfere with the hematopoiesis system, such as anemia and thrombocytopenia associated with suppression of JAK2 signals. Therefore, it is necessary to develop a new potent compound that selectively inhibits JAK1 over JAK2, 3Objectives:To identify the pharmacological characteristic based on efficacy of CJ-15314 as potent and selective JAK1 inhibitor for treatment of autoimmune disease.Methods:In vitro, cell-based, kinase panel, Kd value and human whole blood assay were performed to determine the inhibition potency and selectivity for JAK subfamily kinases. In vivo therapeutic potential was evaluated by RA model including rat Adjuvant-Induced Arthritis (AIA) and collagen-induced arthritic (CIA). To confirm the possibility of further expansion into the autoimmune disease, BioMAP® Diversity PLUS® Panel was performed by discoverX.Results:In vitro assay, CJ-15314 inhibited JAK kinase family in a concentration-dependent manner with IC50 values of 3.8 nM against JAK1, Selectivity for JAK1 over JAK2, 3 was approximately 18, 83 fold greater for CJ-15314. In 1mM ATP condition, CJ-15314 has been confirmed to have the highest JAK1 selectivity over competing drugs, under 1 mM ATP condition that reflects the physiological environment in the body. Similarly, Kd values has also confirmed the selectivity of JAK1, which is 10 fold higher than JAK2, 3. Accordingly, in human whole blood assays, CJ-15314 is 11 fold more potent against IL-6 induced pSTAT1 inhibition through JAK1 (IC50 value: 70 nM) than GM-CSF-induced pSTAT5 inhibition (JAK2) whereas baricitinib and filgotinib exhibited only 2 fold and 7 fold respectively.In vivo efficacy model, CJ-15314 inhibited disease severity scores in a dose dependent manner. In the rat AIA model, CJ-15314 at 30 mg/kg dose showed 95.3% decrease in arthritis activity score, 51.2% in figotinib at 30 mg/kg, 97.7% showed baricitinib at 10 mg/kg. CJ-15314 showed superior anti-arthritic efficacy than filgotinib. CJ-15314 also minimally affected anemia-related parameters but not bricitinib end of the 2-week treatment. In the rat CIA model, like 10 mg/kg of bricitinib, 30 mg/kg of CJ-15314 also has a similar effect, with a significant reduction in histopathological scores.In biomap diversity panel, CJ-15314 inhibited the expression of genes such as MCP-1, VCAM-1, IP-10, IL-8, IL-1, sTNF-α and HLA-DR confirming the possibility of expansion into other diseases beyond arthritis.Conclusion:CJ-15314 is a highly selective JAK1 inhibitor, demonstrates robust efficacy in RA animal model and is good candidate for further development for inflammatory diseases.* CJ-15314 is currently conducting a phase I trial in south Korea.References:[1]Clark JD et al. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014; 57(12):5023-38.[2]Burmester GR et al. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014; 10(2):77-88[3]Jean-Baptiste Telliez et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol., 2016; 11 (12):3442-3451Disclosure of Interests:so young Ki Employee of: CJ healthcare, hyunwoo shin Employee of: CJ healthcare, yelim lee Employee of: CJ healthcare, Hyoung rok Bak Employee of: CJ healthcare, hana yu Employee of: CJ healthcare, Seung Chan Kim Employee of: CJ healthcare, juhyun lee Employee of: CJ healthcare, donghyun kim Employee of: CJ healthcare, Dong-hyun Ko Employee of: CJ Healthcare, dongkyu kim Employee of: CJ healthcare


Sign in / Sign up

Export Citation Format

Share Document