scholarly journals Efficacy of rFVIIIFc for First-Time Immune Tolerance Induction (ITI) Therapy: Final Results from the Global, Prospective VerITI-8 Study

Blood ◽  
2021 ◽  
Vol 138 (Supplement 2) ◽  
pp. LBA-5-LBA-5
Author(s):  
Lynn Malec ◽  
An Van Damme ◽  
Anthony Chan ◽  
Mariya Spasova ◽  
Nisha Jain ◽  
...  

Abstract Introduction: Inhibitor development is a major complication of factor VIII (FVIII) replacement therapy, affecting approximately 30% of people with severe hemophilia A (Peyvandi et al Lancet 2016). Inhibitor eradication is the standard of care to restore responsiveness to FVIII; however, ITI regimens often require frequent high-dose factor injections over a long period (DiMichele et al Haemophilia 2007; Carcao et al Haemophilia 2021). Median (interquartile range [IQR]) time (months) to negative titer in the International ITI Study with high-dose FVIII was 4.6 (2.8-13.8) (n=31); negative titer to normal recovery was 6.9 (3.5-12.0) (n=23); and normal recovery to tolerance was 10.6 (6.3-20.5) (n=22) (Hay and DiMichele Blood 2012). Recombinant factor VIII Fc fusion protein (rFVIIIFc) is an extended half-life (EHL) FVIII that showed potential benefits for ITI in retrospective clinical data and case reports (Malec et al Haemophilia 2016; Groomes et al Pediatr Blood Cancer 2016; Carcao et al Haemophilia 2021). VerITI-8 (NCT03093480) is the first prospective study of rFVIIIFc in first-time ITI and follows on from the reITIrate (NCT03103542) study of rFVIIIFc for rescue ITI (Königs et al Res Pract Thromb Haemost, ISTH 2021). Aim: Describe outcomes in the verITI-8 study of first-time ITI with rFVIIIFc over 48 weeks in subjects with severe hemophilia A and high-titer inhibitors. Methods: VerITI-8 is a prospective, single-arm, open-label, multicenter study exploring efficacy of rFVIIIFc for first-time ITI in people with severe hemophilia A with high-titer inhibitors. Initial screening was followed by an ITI period in which all subjects received rFVIIIFc 200 IU/kg/day until tolerization or 48 weeks had elapsed (Figure). This was followed by tapered dose reduction to standard prophylaxis and follow-up. Key inclusion criteria included males with severe hemophilia A, high-titer inhibitors (historical peak ≥5 Bethesda units [BU]/mL), and prior treatment with any plasma-derived or recombinant standard half-life or EHL FVIII. Key exclusion criteria included coagulation disorder(s) other than hemophilia A and previous ITI. The primary endpoint was time to tolerization (successful ITI) with rFVIIIFc defined by inhibitor titer <0.6 BU/mL, incremental recovery (IR) ≥66% of expected IR (IR ≥1.32 IU/dL per IU/kg) (both at 2 consecutive visits), and t ½ ≥7 hours (h) within 48 weeks. Secondary endpoints included number of subjects achieving ITI success, annualized bleed rates (ABR), and adverse events (AEs). Results: Sixteen subjects were enrolled and received ≥1 rFVIIIFc dose. Median (range) age at baseline was 2.1 (0.8-16.0) years, and historical peak inhibitor titer was 22.4 (6.2-256.0) BU/mL (Table). Twelve (75%), 11 (69%), and 10 (63%) subjects, respectively, achieved a negative inhibitor titer, an IR >66%, and a t½ ≥7 h (ie, tolerance) within 48 weeks. Median (IQR) times in weeks to achieve these markers of success were 7.4 (2.2-17.8), 6.8 (5.4-22.4), and 11.7 (9.8-26.2) (ie, 2.7 [2.3-6.0] months to tolerance), respectively. One subject achieved partial success (negative inhibitor titer and IR ≥66%), and 5 subjects failed ITI, of which 2 had high inhibitors throughout, 2 experienced an increase in inhibitor levels, and 1 recorded a negative inhibitor titer at 282 days. Most bleeds occurred in the ITI period when median (IQR) ABRs (n=13) were 3.8 (0-10.1) overall, 0 (0-2.6) for spontaneous, 1 (0-4) for traumatic, and 0 (0-3.1) for joint. During tapering, median (IQR) ABRs (n=10) were overall, 0 (0-2.4); spontaneous, 0 (0-0); traumatic, 0 (0-1.3); and joint, 0 (0-0). All 16 subjects experienced ≥1 treatment-emergent AE (TEAE), the most frequent of which was pyrexia in 7 subjects (44%). One subject reported ≥1 related TEAE (injection site pain). Nine subjects (56%) experienced ≥1 treatment-emergent serious AE (TESAE). TESAEs occurring in ≥2 subjects included vascular device infection, contusion, and hemarthrosis. No treatment-related TESAEs, discontinuations due to AEs, or deaths were reported. Conclusions: rFVIIIFc is the first EHL FVIII with prospective data for first-time ITI in patients with severe hemophilia A with historical high-titer inhibitors. Evaluated within a 48-week timeframe, rFVIIIFc offered rapid time to tolerization (median 11.7 weeks; 2.7 months) with durable responses in almost two-thirds of subjects and was well tolerated. Optimizing ITI to eradicate inhibitors remains a priority. Figure 1 Figure 1. Disclosures Malec: CSL Behring: Consultancy; Genentech: Consultancy; HEMA Biologics: Consultancy; Pfizer: Consultancy; Sanofi: Consultancy, Research Funding; Takeda: Consultancy; Bioverativ: Consultancy, Research Funding, Speakers Bureau; Shire: Consultancy; Bayer: Consultancy. Van Damme: Pfizer: Consultancy; Shire: Consultancy; Bayer: Consultancy. Chan: Bioverativ: Consultancy. Jain: Sanofi: Ended employment in the past 24 months; Takeda: Current Employment, Current holder of stock options in a privately-held company. Sensinger: Sanofi: Current Employment, Current holder of stock options in a privately-held company. Dumont: Sanofi: Current Employment, Current holder of stock options in a privately-held company. Lethagen: Sobi: Current Employment, Current holder of stock options in a privately-held company. Carcao: Bayer, Bioverativ/Sanofi, CSL Behring, Novo Nordisk, Octapharma, Pfizer, Roche, and Shire/Takeda: Research Funding; Bayer, Bioverativ/Sanofi, CSL Behring, Grifols, LFB, Novo Nordisk, Pfizer, Roche, and Shire/Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees. Peyvandi: Roche: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Sobi: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Ablynx, Grifols, Kedrion, Novo Nordisk, Roche, Shire, and Sobi: Other: Personal Fees. OffLabel Disclosure: adheres to routine clinical practice

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 27-27 ◽  
Author(s):  
Cindy A. Leissinger ◽  
Rebecca Kruse-Jarres ◽  
Suzanne Granger ◽  
Barbara A Konkle ◽  
Margaret V. Ragni ◽  
...  

Abstract Abstract 27 Antibodies (inhibitors) to exogenously administered factor VIII (FVIII) develop in as many as 30 – 40% of patients with severe hemophilia A. Patients with persistent inhibitors are at increased risk of serious, poorly controlled bleeding which results in significant morbidity and in some cases early death. Rituximab, a chimeric murine/human monoclonal antibody directed against CD20, suppresses circulating and tissue B cells and pre-B cells and has been used in the treatment of a variety of autoimmune and alloimmune disorders. The primary objective of this NHLBI Transfusion Medicine Hemostasis network-sponsored study was to evaluate the role of rituximab as an approach to inhibit the production of FVIII antibodies in patients with severe congenital hemophilia A and high titer inhibitors. Methods: This was a prospective, multi-institution, single-arm, open-label Phase II trial. Eligible subjects were males over 18 months of age with severe hemophilia A and a history of an inhibitor ≥5 Bethesda units (BU). Individuals who were HIV positive, undergoing immune tolerance, or receiving immune modulating therapies were excluded. Following a challenge dose of recombinant FVIII (rAHF-PFM) at 50 IU/kg, and evidence of an inhibitor titer ≥ 5 BU at 5 – 14 days after the challenge dose, subjects received rituximab 375 mg/m2 weekly for 4 weeks. Starting two weeks after the fourth rituximab treatment, inhibitor titers were drawn every 4 weeks. A major response was defined as a fall in the inhibitor titer to < 5 BU at any time up to and including week 22, with the titer remaining < 5 BU following re-challenge with FVIII. A minor response was defined as inhibitor falling to < 5 BU at any time up to and including week 22, with the anamnestic peak following re-challenge with FVIII between 5–10 BU and less than 50% of the original anamnestic peak. The null hypothesis was that no more than 5% of subjects treated with rituximab would be major responders. Results: A total of 23 subjects were enrolled; 21 received the initial FVIII challenge. Of these, 4 subjects did not meet the criteria to receive rituximab treatment, and 1 subject withdrew consent. A total of 16 subjects received at least one dose of rituximab and are included in this analysis. The median age was 14 y (range 4 – 38 y). Three subjects (18.8%) had a major response. If the null hypothesis were true, the probability of 3 or more major responses in 16 subjects would be 0.043, so the null hypothesis was rejected. One subject (6.2%) had a minor response to treatment. All 4 responders and 8 non-responders had a baseline inhibitor titer < 20 BU, resulting in a response rate of 33% in that group vs. 0% in the 4 subjects with a baseline inhibitor titer ≥ 20 BU. Discussion: Infusion of rituximab 375 mg/m2 once per week for four weeks was effective in reducing the anamnestic inhibitor response in 25% of severe hemophilia A subjects with inhibitors who were not receiving concurrent immune tolerance therapy. Those who responded tended to have lower baseline inhibitor levels compared to the group that did not meet the criteria for response. This Phase II study, designed as a proof of concept, demonstrated that rituximab may be useful in lowering inhibitor levels and anamnesis in some patients with inhibitors, but that the effect as a solo treatment strategy is modest, and possibly restricted to patients with inhibitor titers under 20 BU. Further studies are indicated to determine the role of rituximab as an adjunctive therapy in immune tolerization strategies. Acknowledgments: The authors acknowledge the support of Genentech for the provision of rituximab and partial financial support for the study. The authors also acknowledge Baxter Healthcare Corporation for donating the recombinant FVIII used in the trial. Disclosures: Leissinger: Baxter: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Off Label Use: Rituximab, a drug approved for use in treating lymphoma, was studied for its efficacy in suppressing inhibitors against factor VIII in patients with hemophilia and high titer inhibitors. Kruse-Jarres:Baxter: Consultancy, Honoraria; Bayer:; Griforls: Consultancy, Honoraria; Inspiration: Consultancy, Honoraria; NovoNordisk: Consultancy, Honoraria. Konkle:Baxter Corporation: Consultancy, Research Funding; Bayer Corp: Consultancy; Inspiration Biopharmaceuticals: Research Funding; CSL Behring: Consultancy, Membership on an entity's Board of Directors or advisory committees. Neufeld:Genentech: Research Funding; Baxter: Research Funding; Bayer: Research Funding. Bennett:Biogen IDEC: Honoraria. Valentino:Baxter Bioscience, Bayer Healthcare, GTC Biotherapeutics, NovoNordisk, Pfizer, CSL Behring, Inspiration Bioscience, and Biogen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3185-3185
Author(s):  
Robert F. Sidonio ◽  
Alexis A. Thompson ◽  
Flora Peyvandi ◽  
Canan Albayrak ◽  
Seoh Leng Yeoh ◽  
...  

Abstract Background The development of inhibitors to exogenous factor VIII (FVIII) is a serious treatment complication in patients with hemophilia A. Immune tolerance induction (ITI) is the only proven method for the eradication of FVIII inhibitors. This prospective, multicenter, open-label, phase 3 study (NCT02615691) is being conducted to determine the safety, immunogenicity, and efficacy of the extended half-life (EHL) recombinant FVIII rurioctocog alfa pegol (Adynovate ®; Baxalta US Inc., a Takeda company, Lexington, MA, USA) in previously untreated patients (PUPs) with severe hemophilia A. The data presented here aims to evaluate the efficacy and safety of ITI therapy with rurioctocog alfa pegol in patients who developed FVIII inhibitors. Methods Eligible patients were ˂6 years of age with severe hemophilia A (FVIII &lt;1%) and &lt;3 exposure days (ED) to rurioctocog alfa pegol, octocog alfa, or plasma transfusion at any time prior to screening. Patients with detectable FVIII inhibitory antibodies at screening or a history of FVIII inhibitors prior to screening (≥0.6 Bethesda units [BU]) were excluded from the study. Patients received intravenous rurioctocog alfa pegol as prophylaxis (25-50 IU/kg, up to 80 IU/kg ≥1 × weekly) and/or on-demand therapy (10-50 IU/kg, up to 80 IU/kg depending on bleed severity). Patients who developed a high-titer FVIII inhibitor (&gt;5.0 BU) or low-titer FVIII inhibitor (≥0.6 BU to ≤ 5.0 BU) plus poorly controlled bleeding despite increased FVIII doses and/or bypassing agents, were eligible for ITI therapy. Dosing for ITI therapy ranged between 50 IU/kg 3 × weekly (low dose) and 100-200 IU/kg daily (high dose) at investigator discretion. This protocol-specified interim analysis was conducted after 50 patients had completed ≥50 EDs without developing confirmed inhibitors to rurioctocog alfa pegol or had developed a confirmed FVIII inhibitor at any time. The data cut-off was 30 August 2019. The primary endpoint of this study was the success rate of ITI with rurioctocog alfa pegol. Success was defined as an inhibitor titer persistently &lt;0.6 BU, FVIII incremental recovery (IR) ≥66% of baseline following 84- to 96-hour wash-out, and FVIII half-life ≥6 hours (dependent on protocol version). Secondary endpoints included the rates of partial success and failure of ITI, and annualized bleeding rate (ABR) during ITI. The number and percentage of patients reporting adverse events (AEs) and serious AEs (SAEs) were recorded for patients treated with ITI. Informed consent and ethics approval were obtained. Results As of the data cut-off, 59 (73.8%) of 80 enrolled patients had received ≥1 dose of rurioctocog alfa pegol; 18 patients did not meet the eligibility criteria (screen failures) and 4 discontinued prior to treatment. 10 patients developed an inhibitor to rurioctocog alfa pegol (high titer: n=5; low titer: n=5), of these, 6 patients were enrolled to receive ITI and only 5 of these (83.3%) actually received ≥1 dose of rurioctocog alfa pegol for the treatment of FVIII inhibitors (low dose: n=3; high dose: n=2). Of these 5 patients, 1 completed high-dose ITI therapy and this was successful (based on negative inhibitor titer and IR ≥66% of baseline). The remaining 4 patients were continuing in the study at the time of the data cut-off. Of the 5 patients who received ≥1 dose of ITI, 4 (80.0%) had a total of 17 AEs, 3 (60.0%) experienced 8 SAEs, and 1 experienced a treatment-related SAE of FVIII inhibition. It is important to note that the onset date of FVIII inhibitor development in this patient occurred prior to initiation of ITI. One patient experienced 2 catheter-related AEs, both of which resolved, and no patients experienced thrombotic AEs, study procedure-related AEs, or AEs leading to discontinuation of treatment. Discussion This is the first prospective study of the EHL recombinant FVIII rurioctocog alfa pegol for the treatment of PUPs with severe hemophilia A. These preliminary results demonstrate that rurioctocog alfa pegol has a safety profile consistent with previous studies. In addition, these interim data suggest that using a high-dose regimen for ITI therapy is potentially efficacious in PUPs who have developed FVIII inhibitors, although only 1 patient had completed ITI at the time of this interim analysis. Disclosures Sidonio: Pfizer: Consultancy; Octapharma: Consultancy, Research Funding; Catalyst: Consultancy; Novo Nordisk: Consultancy; Bayer: Consultancy; Guardian Therapeutics: Consultancy; Genentech: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Biomarin: Consultancy. Thompson: Global Blood Therapeutics: Current equity holder in publicly-traded company; CRISPR Therapeutics: Research Funding; Vertex: Research Funding; Editas: Research Funding; Graphite Bio: Research Funding; Novartis: Research Funding; Agios: Consultancy; Beam: Consultancy; Celgene/BMS: Consultancy, Research Funding; Biomarin: Research Funding; Baxalta: Research Funding; bluebird bio, Inc.: Consultancy, Research Funding. Peyvandi: Bioverativ: Honoraria; Sanofi: Consultancy, Honoraria; Sobi: Consultancy, Honoraria; Spark: Honoraria; Takeda: Honoraria; Roche: Honoraria; Grifols: Honoraria. Yeoh: Grifols: Honoraria; Roche: Honoraria; Pfizer: Honoraria; Takeda: Honoraria. Lam: Takeda: Consultancy, Honoraria; Roche: Honoraria; Bayer: Honoraria; Pfizer: Consultancy, Honoraria. Maggiore: IQVIA: Current Employment. Engl: Takeda: Current equity holder in publicly-traded company; Baxalta Innovations GmbH, a Takeda company: Current Employment. Allen: Takeda: Current equity holder in publicly-traded company; Takeda Development Center Americas, Inc.: Current Employment. Tangada: Takeda Development Center Americas, Inc: Current Employment; Takeda: Current equity holder in publicly-traded company.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 636-636 ◽  
Author(s):  
Barbara A Konkle ◽  
Amy Shapiro ◽  
Doris Quon ◽  
Janice Staber ◽  
Takashi Suzuki ◽  
...  

Abstract Introduction: The standard of care for patients with severe hemophilia A is prophylactic factor VIII (FVIII) replacement. Conventional recombinant FVIII products are efficacious but require frequent administration because of their short half-life, which reflects the dependence of FVIII on von Willebrand factor (VWF). Recombinant FVIII Fc fusion protein (rFVIIIFc) provides an extended dosing interval, as well as joint protection and improved quality of life (Oldenburg et al, Haemophilia, 2018; Wang et al, Blood, 2016), with a well-characterized safety profile. While rFVIIIFc reduces the required administration frequency, longer prophylactic dosing intervals that also offer maximum overall protection are still an unmet need for patients with severe hemophilia A. Increasing the half-life of rFVIII is ultimately dependent upon decoupling FVIII and endogenous VWF. BIVV001 (rFVIII-VWF-XTEN) is a novel investigational rFVIII therapy with single-chain FVIII, the Fc domain of human immunoglobulin G1, 2 XTEN polypeptides, and the FVIII-binding D′D3 domain of VWF, designed to circulate in plasma independently of VWF, thereby breaking the VWF half-life ceiling. Here, we present the low-dose cohort results of EXTEN-A, a Phase 1/2a study assessing the safety and tolerability of a single dose of BIVV001, and the pharmacokinetic (PK) characteristics of a single dose of BIVV001 compared with rFVIII. Methods: EXTEN-A (NCT03205163) is an open-label, dose-escalation, multicenter study. Previously treated adult males with severe hemophilia A (<1 IU/dL [<1%] endogenous FVIII activity) with ≥150 exposure days to FVIII products were included. Patients were assigned to either the low-dose cohort (25 IU/kg of rFVIII and 25 IU/kg of BIVV001; n≥6) or the high-dose cohort (65 IU/kg of rFVIII and 65 IU/kg of BIVV001; n≥8). Escalation from the low-dose cohort, and enrolment of patients to the high-dose cohort was undertaken after assessment of available data from the low-dose cohort. After a screening and washout period of up to 28 days, patients received a single dose (25 or 65 IU/kg) of rFVIII. After a 3- to 4-day washout period, patients received a single dose of BIVV001 at the same dose level as rFVIII. Blood samples for PK analysis were collected for 3 days after dosing of rFVIII and up to 14 days after dosing of BIVV001. Inhibitor testing was performed 14 and 28 days following BIVV001 administration. Adverse events, clinical abnormalities in laboratory tests (including inhibitor development), and PK parameters were assessed. An interim analysis is planned, including the first 2 patients of the high-dose cohort. Results: Out of 7 patients enrolled in the low-dose cohort (25 IU/kg), 6 patients were dosed with BIVV001. Patients in this group were primarily white, with 1 patient of Asian descent, and 1 of Hispanic/Latino ethnicity. Patient ages ranged from 19 to 60 years. Low-dose BIVV001 was well tolerated and no inhibitors were detected through 28 days after BIVV001 dosing. Low-dose BIVV001 demonstrated an extended half-life of 37.6 hours, compared with a 12.1-hour half-life for rFVIII. Average FVIII activity post-infusion of BIVV001 was 12.2% at 5 days and 5.3% at 7 days. At least 8 patients will be enrolled in the high-dose cohort (65 IU/kg); preliminary data for the first 2 patients will be reported. Conclusions: BIVV001 was well tolerated in 6 patients with severe hemophilia A who were treated with a single low dose (25 IU/kg). No patient developed an inhibitor to FVIII. Low-dose cohort data demonstrated a breakthrough in the half-life of rFVIII therapy, with BIVV001 providing sustained FVIII levels that could potentially allow for more optimal, extended protection for patients. Disclosures Konkle: Genentech: Consultancy; Spark: Consultancy, Research Funding; Pfizer: Research Funding; Gilead: Consultancy; CSL Behring: Consultancy; Bioverativ: Research Funding; BioMarin: Consultancy; Sangamo: Research Funding; Shire: Research Funding. Shapiro:Shire: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; BioMarin: Research Funding; Prometic Life Sciences: Consultancy, Research Funding; Bioverativ, a Sanofi Company: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sangamo Biosciences: Consultancy; Genetech: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bayer Healthcare: Other: International Network of Pediatric Hemophilia; OPKO: Research Funding; Octapharma: Research Funding; Kedrion Biopharma: Consultancy, Research Funding; Bio Products Laboratory: Consultancy; Daiichi Sankyo: Research Funding; Novo Nordisk: Membership on an entity's Board of Directors or advisory committees, Research Funding. Quon:Bioverativ, a Sanofi Company: Speakers Bureau; Octapharma: Consultancy; Genetech: Consultancy, Speakers Bureau; Bayer: Consultancy; NovoNordisk: Consultancy, Speakers Bureau; Shire: Speakers Bureau. Staber:uniQure: Honoraria; NovoNordisk: Consultancy; Bayer: Honoraria. Suzuki:Chugai Pharmaceutical Co., Ltd: Research Funding, Speakers Bureau. Poloskey:Bioverativ: Employment. Rice:Bioverativ: Employment. Katragadda:Bioverativ: Employment. Rudin:Bioverativ: Employment, Equity Ownership. Fruebis:Bioverativ: Employment, Other: Clinical Development.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3774-3774
Author(s):  
Maria Elisa Mancuso ◽  
Kathelijn Fischer ◽  
Elena Santagostino ◽  
Johannes Oldenburg ◽  
Helen Platokouki ◽  
...  

Abstract The development of anti-FVIII antibodies (i.e., inhibitors) is the major side effect of severe hemophilia A treatment. Inhibitors mainly develop in children during the first 50 exposure days and are classified in low-and high-titer (i.e., peak titer < or > 5 UB/ml). High-titer inhibitors have the major clinical impact. At diagnosis however, the real nature of the antibody is not clear in all patients, since some low-titer inhibitors may progress to high-titer. The determinants of the evolution from low- to high-titer inhibitors are still unclear and the aim of the present study was to investigate potential risk factors associated with the progression from low- to high-titer inhibitors. This study is a follow-up study of the PedNet Registry and includes 260 children with severe hemophilia A and clinically relevant inhibitors, born between 1990 and 2009 and consecutively recruited from 31 hemophilia centers in 16 countries. Clinical and laboratory data were collected from the date of first positive inhibitor test and covered a minimum of 3-years follow-up. Factors potentially associated with progression from low- to high-titer inhibitor development were analyzed using univariate and multivariate logistic regression. F8 mutation type was known in 247 patients (95%), including 202 (82%) null mutations (i.e., large deletions, nonsense mutations and inversions). Positive family history of inhibitors was present in 37 of 99 (37%) with positive family history of hemophilia. At diagnosis 49% (n=127) had low-titer inhibitors, however, upon FVIII re-exposure, 50% of low-titer inhibitors progressed to high-titer and only 25% of patients (n=69) had persistent low-titer inhibitors. Within the first 3 years of follow-up, immune tolerance induction (ITI) was equally implemented in around 80% of low-and high-titer patients but it was started later in children with high-titers (median time to ITI start 4.5 vs 0.3 months; p<0.001) in whom daily regimens and high-dose FVIII were more frequently adopted (89, 67% vs 41, 50% and 98, 74% vs 35, 43%; p=0.01 and <0.001, respectively). Overall high-titer inhibitor development was associated with null F8 mutations (OR 2.8, 95%CI 1.4-5.5) and family history of inhibitors (OR 3.9, 95%CI 1.2-12.6). The progression from low- to high-titer inhibitors during follow up, was associated with the use of high-dose ITI regimens (i.e., >100 IU/kg/day) with an OR of 3.9 (95%CI 1.5-10.0), independent from the effects of F8 mutation type (adjusted OR 3.6, 95%CI 1.4-9.8) and family history of inhibitors (adjusted OR 6.7, 95%CI 1.1-42.6). No difference was found by comparing the use of daily versus non-daily ITI. In conclusion, in a cohort of 260 children with severe hemophilia A and inhibitors, 49% presented with low-titers at diagnosis and 46% of them progressed to high-titers during follow-up. Progression to high-titer inhibitors was associated with the use of high-dose ITI. These results suggest that intensive ITI should be avoided as initial strategy in low-titer inhibitor patients. Disclosures Mancuso: Pfizer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Sobi/Biogen Idec: Consultancy, Speakers Bureau; Novo Nordisk: Consultancy, Speakers Bureau; CSL Behring: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Baxalta: Consultancy, Speakers Bureau; Bayer Healthcare: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Kedrion: Consultancy. Fischer:Wyeth/Pfizer: Research Funding; Biogen: Consultancy; NovoNordisk: Consultancy, Research Funding, Speakers Bureau; Pfizer: Consultancy, Speakers Bureau; Biotest Octapharma: Speakers Bureau; CSL Behring: Speakers Bureau; Baxter: Consultancy, Research Funding, Speakers Bureau; Freeline: Consultancy; Bayer: Consultancy, Research Funding, Speakers Bureau. Santagostino:Octapharma: Consultancy; Novo Nordisk: Consultancy; Kedrion: Consultancy; Sobi: Consultancy; Biogen Idec: Consultancy; Roche: Consultancy; Grifols: Consultancy; Pfizer: Consultancy; Baxalta: Consultancy; CSL Behring: Consultancy; Bayer: Consultancy. Escuriola:Baxalta, now part of Shire: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Investigator Clinical Studies, Research Funding; Bayer: Consultancy, Honoraria, Research Funding; Biotest: Consultancy, Honoraria, Research Funding; CSL Behring: Consultancy, Honoraria, Research Funding; Grifols: Consultancy, Honoraria, Research Funding; Octapharma: Consultancy, Honoraria, Research Funding; NovoNordisk: Consultancy, Honoraria, Research Funding. Liesner:BPL: Consultancy, Honoraria, Research Funding; Bayer: Consultancy, Honoraria, Speakers Bureau; Cangene: Research Funding; CSL Behring: Consultancy, Honoraria, Research Funding; Baxalta Innovations GmbH, now a part of Shire: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; SOBI: Consultancy, Honoraria, Research Funding, Speakers Bureau; Octapharma: Consultancy, Honoraria, Research Funding, Speakers Bureau; Biogen: Consultancy, Honoraria, Research Funding; Grifols: Consultancy, Honoraria. Nolan:Sobi: Research Funding; Biogen: Research Funding.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 648-649 ◽  
Author(s):  
Maissaa Janbain ◽  
Steven Pipe

Abstract A 10-year-old boy presents with a history of severe hemophilia A and high-titer inhibitor that had failed high-dose immune tolerance induction (ITI) with a recombinant factor VIII (rFVIII) product and a plasma-derived FVIII product. You are asked by his mother whether he should be tried on ITI with an extended half-life product, in particular, consideration of a rFVIIIFc concentrate.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3793-3793
Author(s):  
Margaret V. Ragni ◽  
Lynn M. Malec ◽  
Janna M. Journeycake

Introduction: The eradication of inhibitors using immune tolerance induction (ITI) remains the mainstay of therapy in patients with severe hemophilia A who develop inhibitors. The long-acting recombinant factor VIII Fc fusion protein, rFVIIIFc (Eloctate™), which is safe and effective in the prevention and treatment of bleeding events, may promote tolerance to FVIII as shown in preclinical animal models and an inhibitor prone child, as Fc suppresses immunoregulatory Tcells to proteins to which Fc is attached. We therefore previously hypothesized rFVIIIFc would provide effective ITI, specifically shortening and simplifying ITI, and have previously described successful inhibitor eradication in three patients. Long-term follow-up data after successful ITI in patients with severe hemophilia remains limited. In the International Immune Tolerance Induction study, at 1-year follow-up, 6 of 66 subjects who had achieved tolerance demonstrated evidence of relapse at a median of 9.5 months. Of these 6 subjects, 1 had a measurable inhibitor titer and 5 had reduced FVIII recovery. We aim to provide follow-up data on our cohort of patients who had successful inhibitor eradication utilizing rFVIIIFc for ITI. Methods: Immune tolerance induction was initiated in three patients with severe hemophilia A and anti-VIII >5 B.U., in two as initial ITI (Pt. 1, 3), and one as salvage (Pt. 2) after failing to achieve ITI with standard rFVIII due to poor compliance. Follow-up was scheduled every 6-8 weeks, with planned determination of FVIII half-life once the anti-FVIII fell to <0.6 B.U. Tolerance was a priori defined as achieving anti-FVIII <0.6 B.U., FVIII recovery of at least 60%, and half-life (t½) >6 hours. Once a t½ >6 hours was documented, incremental reduction to rFVIIIFc occurred. Patients continued to be followed by their local HTC as per standard of care. Results: ITI was initiated with rFVIIIFc at a dose of 100-200 IU/kg rFVIIIFc every other day or three times weekly per MD discretion. The time to initial anti-FVIII <0.6 B.U. was 4-12 weeks. Patient 1 and 2 were able to achieve tolerance, with a FVIII recovery of at least 60%, and half-life (t½) >6 hours, at weeks 18 and 17, respectively, after initiation of ITI. Patient 3 has improved but is not yet fully tolerized, as evidenced by 57% recovery and a t½ of approximately 7 hours. Anti-VIII inhibitor titers remain negative at 15, 16 and 15 months, from the initiation of ITI in patients 1, 2, and 3 respectively. Patients 1 and 2 have been able to decrease their post ITI prophylaxis dosing regimen to 80 IU/kg and 65 IU/kg three times a week while maintaining a FVIII trough of >1%. No patients were maintained on bypassing prophylaxis during ITI and no patients have experienced hemarthroses or other major bleeding event since the initiation of ITI. Discussion: Immune tolerance induction was successful in three children with inhibitors using rFVIIIFc, including a child previously failing rFVIII ITI. The time to anti-FVIII=0 was 4-12 weeks, significantly shorter than with current rFVIII ITI. At a mean duration of follow up of 15.3 months, all patients achieved an anti-VIII inhibitor titer of 0 B.U. Repeat pharmacokinetics studies will be available at planned subsequent follow-up visit. To date, these data indicate that rFVIIIFc safely and effectively induced immune tolerance to FVIII in three children with inhibitors, and has provided durable and continuing immune tolerance to FVIII. Whether rFVIIIFc ITI will be successful and durable in a larger cohort of children with severe hemophilia A will require prospective studies. A prospective observational study of rFVIIIFc ITI pre- and post-ITI T cell responses in children with hemophilia and inhibitors, the Hemophilia Inhibitor Response to Eloctate (HIRE) Study, has begun recruitment. Disclosures Ragni: SPARK: Research Funding; Shire: Consultancy; Novo Nordisk: Research Funding; Genentech: Research Funding; CSL Behring: Research Funding; Biomarin: Consultancy; Biogen: Consultancy, Research Funding; Baxalta: Research Funding; Alnylam Pharmaceuticals: Consultancy, Research Funding; Tacere Benitec: Consultancy; Vascular Medicine Institute: Research Funding; OPKO: Research Funding. Malec:Vascular Medicine Institute: Research Funding; Biogen: Research Funding; Baxalta: Research Funding; Biogen: Consultancy. Journeycake:CSL: Consultancy; Biogen: Consultancy; Baxalta/Shire: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4783-4783 ◽  
Author(s):  
Víctor Jiménez-Yuste ◽  
Sandra Lejniece ◽  
Robert Klamroth ◽  
Trine Saugstrup ◽  
Judi Moss

Introduction Turoctocog alfa is a B domain truncated human recombinant FVIII for treatment of patients with hemophilia A. The production yields a highly homogenous product with the same tyrosine sulphation as human FVIII. In order to confirm the consistency of turoctocog alfa pharmacokinetics (PK) over different production lots and vial strengths, a clinical trial was performed in 15 patients with severe hemophilia A. Aim To compare the PK of 3 lots of 2000 IU/vial and 1 lot of 3000 IU/vial of turoctocog alfa after i.v. administration of 50 IU/kg in patients with severe haemophilia A. Methods This was a multi-centre, open-label trial investigating the PK of 4 lots of turoctocog alfa (3 lots of 2000 IU/vial; Lots A, B and C, and 1 lot of 3000 IU/vial; Lot D) in patients with severe hemophilia A (FVIII<1%). The trial was performed as a two-period, incomplete block, cross-over trial, in which each patient was allocated at random to a predefined sequence of 2 different lots of turoctocog alfa. The FVIII activity was assessed using both the one-stage clot and chromogenic assays. Both the primary endpoint, normalized AUC (AUC*(planned dose/actual dose)), and the secondary PK endpoints were analyzed by ANCOVA on the log transformed values, with lot, visit and patient as fixed effects. Each of the three 2000 IU/vial lots was compared and tested against the 2 other 2000 IU/vial lots. If not significantly different on a 5% level, the 3 lots were pooled together and tested against the 3000 IU/vial lot. Results Fifteen patients with a mean age of 38.6 years (ranging from 21 to 60 years) were included from 3 hemophilia centres in 3 different countries. Three adverse events (AEs) were reported in the trial by 2 separate patients; all AEs were judged to be unlikely related to the trial product. There was no development of inhibitors. There was no pharmacokinetic difference observed between Lots A, B, C (2000 IU/vials) and there was no pharmacokinetic difference observed between the pooled data from lot A, B and C (2000 IU/vial) and lot D (3000 IU/vial) based on normalized AUC, half-life, incremental recovery and clearance. The estimated mean values (with 90% CI) for the PK parameters based on the chromogenic assay are presented in Table 1. The results were similar for the one-stage clot assay and the chromogenic assay. Conclusions No pharmacokinetic differences were observed between the three 2000 IU/vial lots (Lot A, Lot B and Lot C), nor were there pharmacokinetic differences between Lot D (3000 IU/vial) and pooled data from Lots A, B and C, based on normalized AUC, half-life, incremental recovery and clearance. There were no safety concerns and no inhibitor development in the trial. Disclosures: Jiménez-Yuste: Novo Nordisk: Consultancy, Research Funding, Speakers Bureau. Klamroth:Novo Nordisk, CSL Behring, Bayer, Baxter, Pfizer: Honoraria, Research Funding. Saugstrup:Novo Nordisk: Employment. Moss:Novo Nordisk: Employment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2845-2845
Author(s):  
Natalie L Smith ◽  
Abimbola Onasoga ◽  
Linda Jacobson ◽  
Elizabeth Villalobos-Menuey ◽  
Katherine A. Ruegg ◽  
...  

Abstract Background: Pediatric severe hemophilia A patients with high titer inhibitors are often reported to have inadequate control of acute bleeding episodes because they do not respond to bypassing agents as predictably as with FVIII therapy for non-inhibitor patients. Thromboelastography (TEG) is a global assay of hemostasis that has promising benefits for use in clinical care for hemophilia patients. Aims: This study was performed to determine in pediatric inhibitor patients: 1) if baseline TEG, specifically R or reaction time that corresponds to time to thrombin generation and clot formation, is stable over time in individual inhibitor patients; 2) if there are any predictors of baseline TEG R time; 3) to determine response to recombinant activated factor VII (rFVIIa, NovoSeven, NovoNordisk, Copenhagen, Denmark); and 4) to determine predictors of TEG R time following rFVIIa. Methods: This analysis was conducted within a consented single institution prospective inceptional cohort study. Clinical data regarding healthy volunteers with no personal or family history of a bleeding or clotting disorder and pediatric hemophilia patients with and without inhibitors (assayed by Nijmegen modification of the Bethesda assay (BU)) were extracted from research records and electronic medical records. For this study, TEGs were performed in kaolin citrated samples with added TPA (final concentration 450 ng/mL). Descriptive data were presented as mean and SD. This report analyzed TEG R times, indicating time to clot formation and initial thrombin generation. Baseline TEGs were obtained at least five half-lives after the last infusion of each clotting factor or bypassing agent received. Post treatment TEGs were performed on patients 1 hour following a therapeutic treatment with rFVIIa. Results: R times on TEGs were obtained on 24 healthy adults, 23 healthy children, 15 children with severe hemophilia A without an inhibitor, and 12 children with severe hemophilia A and an inhibitor. 32 samples were obtained in the 12 children with inhibitors, with 1 to 11 samples from each child. Paired samples were obtained at baseline prior to and 1 hour following a dose (90-270 mg/kg) of rFVIIa. Mean TEG R times were 8.3 minutes (SD 1.4) for healthy adults, 7.7 minutes (SD 1.5) for healthy children, 20.2 minutes (SD 9.4) for children with severe hemophilia A and 102.1 minutes (SD 44.4) for children with severe hemophilia A and inhibitors. Healthy children did not differ from healthy adults (p=0.43), but children with hemophilia with inhibitors differed from healthy controls (p=0.046) and trended toward differences from children with hemophilia without inhibitors (p=0.08, however limited in sample number). Baseline R values in children with inhibitors did not correlate with age (r=-0.19) or inhibitor titer (r=0.23). Children studied on multiple occasions showed variability over time. TEG 1 hour following rFVIIa in a baseline state showed a mean R time of 25.1 minutes (SD 7.1). Post rFVIIa R time did not correlate with age (r=0.21) or inhibitor titer (r=-0.14), but showed considerable correlation with baseline TEG R time (Figure 1, r =0.65, p=0.013). Following infusion of rFVIIa, TEG R times of children with inhibitors never achieved the normal range. However, when rFVIIa was studied following multiple infusions without a washout, the mean TEG R was moderately, but non-significantly shorter at 20.6 minutes (SD 5.6). Conclusions: TEG R times in young children with severe hemophilia A with inhibitors are greatly prolonged compared to healthy children or adults, and moderately longer than that in children with severe hemophilia A without inhibitors. Baseline TEG R varies over time and cannot be predicted by age or inhibitor titer. Baseline TEG R time may be an important predictor of response to bypassing therapy and serial monitoring over time may be clinically useful to guide therapy. During the course of multiple infusions, moderately improved TEG R responses were determined compared with first infusions. This may, in part, explain our previously reported observation of longer duration of rFVIIa dosing in young children with inhibitors. Future studies employing TEG to help optimize response to bypassing agents are needed. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3778-3778
Author(s):  
Amy L. Dunn ◽  
Alexis A. Thompson ◽  
Werner Engl ◽  
Marlies Sharkhawy ◽  
Brigitt E. Abbuehl

Abstract Introduction: Patients with hemophilia A are at risk for acute bleeding which may affect muscles and other soft tissues but characteristically involves joints. Prophylaxis with factor VIII (FVIII) is the optimal treatment to prevent bleeding into joints and, when begun at a young age, may prevent arthropathy. BAX 8551, a polyethylene glycol (peg)ylated, full-length, recombinant FVIII built on ADVATE2, demonstrated extended half-life, efficacy, and safety for prophylaxis and treatment of bleeding in patients with severe hemophilia A. Methods: A phase 3, prospective, uncontrolled, multicenter study was performed in pediatric patients with severe hemophilia A without history of inhibitors. To be eligible, patients aged <6 years had to have ≥50, those aged 6 to <12 years ≥150 previous exposure days (EDs) to FVIII. Patients received twice weekly infusions of 50 ±10 IU/kg of BAX 855 over a period of 6 months or ≥50 EDs. The prevalence of target joints, defined as a single joint with ≥3 spontaneous bleeding episodes in any consecutive 6-month period, was assessed at baseline. Annualized rates of target joint bleeds and the course of target joints were evaluated by age (<6 and 6 to <12 years). The study was performed in accordance with the principles of the Declaration of Helsinki of the World Medical Association. Results:Sixty-six patients were treated with a mean (SD) BAX 855 dose of 51.1 (5.5) IU/kg at a mean (SD) frequency of 1.8 (0.2) infusions/week. Fourteen of 66 patients (21.2%), 3/32 (9.4%) in the younger and 11/34 (32.4%) in the older cohort, had a total of 23 target joints at screening. The number of target joint bleeds decreased during a mean (SD) of 48.5 (7.7; median: 49.0) prophylactic EDs/patient. Five of 66 (7.6%) patients had at least 1 target joint bleed, 1/32 (3.1%) in the younger and 4/34 (11.8%) in the older cohort. The point estimate for the mean (95% CI) annualized rate of target joint bleeds was 0 (0 - infinity; median: 0) compared to an annualized rate of all joint bleeds of 1.1 (0.6 - 1.9; median: 0) and an annualized rate of all bleeds of 3.0 (2.2 - 4.2; median: 2.0) (Table 1). The point estimate for the mean (95% CI) annualized bleeding rate (ABR) in 52 patients without target joints was 2.9 (2.0 - 4.2; median: 2.0) and was similar in 14 patients with target joints at screening at 3.5 (1.9 - 6.6; median: 2.1). In the younger cohort, the ABR was lower in patients with than those without target joints. However, the number of patients <6 years with target joints (N = 3) was too small to draw any conclusions (Table 1). During BAX 855 prophylaxis, no new target joints developed in any patient. Ten of 14 patients had at least 1 target joint revert to a non-target joint. In 8 of these 10 patients, 4 with 1 and 4 with 2 target joints, all target joints resolved. Conclusions:These results suggest that twice weekly infusion of BAX 855 is effective in the prevention of bleeding into target joints and may revert target to non-target joints in pediatric patients with severe hemophilia A. 1BAX 855 (Baxalta US Inc., now part of Shire) is licensed in the US and Japan under the trade name ADYNOVATE. 2ADVATE is a trade mark of Baxalta US Inc., now part of Shire. Disclosures Dunn: NovoNordisk: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Kedrion: Research Funding; Pfizer: Research Funding; CSL Behring: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Biogen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Baxalta (now part of Shire): Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Research Funding. Thompson:Eli Lily: Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; bluebird bio: Consultancy, Research Funding; ApoPharma: Consultancy, Membership on an entity's Board of Directors or advisory committees; Mast: Research Funding; Amgen: Research Funding; Baxalta (now part of Shire): Research Funding. Engl:Shire: Employment, Equity Ownership. Sharkhawy:Baxalta (now part of Shire): Employment. Abbuehl:Baxalta (now part of Shire): Employment.


1998 ◽  
Vol 80 (11) ◽  
pp. 779-783 ◽  
Author(s):  
Y. Laurian ◽  
E. P. Satre ◽  
A. Borel Derlon ◽  
H. Chambost ◽  
P. Moreau ◽  
...  

SummaryFifty French previously untreated patients with severe hemophilia A (factor VIII <1%), treated with only one brand of recombinant factor VIII (rFVIII), were evaluated for inhibitor development, assessment of risk factors and outcome of immune tolerance regimen. The median period on study was 32 months (range 9-74) since the first injection of rFVIII. Fourteen patients (28%) developed an inhibitor, four of whom (8%) with a high titer (≥10 BU). All inhibitor patients but one continued to receive rFVIII either for on-demand treatment or for immune tolerance regimen (ITR). Among these patients, inhibitor was transient in 2 (4%), became undetectable in 6 and was still present in 6. The prevalence of inhibitor was 12%. Presence of intron 22 inversion was found to be a risk factor for inhibitor development. Immune tolerance was difficult to achieve in our series despite a follow-up period of 16 to 30 months: immune tolerance was complete in only one out of the 3 patients undergoing low dose ITR and in one out of the 5 patients with high dose ITR.


Sign in / Sign up

Export Citation Format

Share Document