scholarly journals Engineered Bcor mutations lead to acute leukemia of progenitor B-1 lymphocyte origin in a sensitized background

Blood ◽  
2019 ◽  
Vol 133 (24) ◽  
pp. 2610-2614 ◽  
Author(s):  
Mianmian Yin ◽  
Yang Jo Chung ◽  
R. Coleman Lindsley ◽  
Robert L. Walker ◽  
Yuelin J. Zhu ◽  
...  

Abstract Approximately 10% of NUP98-PHF23 (NP23) mice develop an aggressive acute lymphoblastic leukemia of B-1 lymphocyte progenitor origin (pro-B1 ALL), accompanied by somatic frameshift mutations of the BCL6 interacting corepressor (Bcor) gene, most commonly within a 9-bp “hotspot” in Bcor exon 8. To determine whether experimentally engineered Bcor mutations would lead to pro-B1 ALL, we used clustered, regularly interspaced, short palindromic repeats–associated protein 9 to introduce a Bcor frameshift mutation into NP23 hematopoietic stem and progenitor cells through the use of Bcor small guide RNAs (Bcor sgRNAs). Recipient mice transplanted with NP23 bone marrow or fetal liver cells that had been transduced with a Bcor sgRNA developed pro-B1 ALL, characterized by a B-1 progenitor immunophenotype, clonal Igh gene rearrangement, and Bcor indel mutation, whereas control recipients did not. Similar to a subset of human B-cell precursor ALL, the murine pro-B1 ALL had acquired somatic mutations in Jak kinase genes. JAK inhibitors (ruxolitinib and tofacitinib) inhibited the growth of pro-B1 ALL cell lines established from Bcor sgRNA/NP23 recipients at clinically achievable concentrations (100 nM). Our results demonstrate that Bcor mutations collaborate with NP23 to induce pro-B1 ALL, and that JAK inhibitors are potential therapies for pro-B1 ALL.

Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3197-3207 ◽  
Author(s):  
Kirsteen J. Campbell ◽  
Mary L. Bath ◽  
Marian L. Turner ◽  
Cassandra J. Vandenberg ◽  
Philippe Bouillet ◽  
...  

Abstract Diverse human cancers with poor prognosis, including many lymphoid and myeloid malignancies, exhibit high levels of Mcl-1. To explore the impact of Mcl-1 overexpression on the hematopoietic compartment, we have generated vavP-Mcl-1 transgenic mice. Their lymphoid and myeloid cells displayed increased resistance to a variety of cytotoxic agents. Myelopoiesis was relatively normal, but lymphopoiesis was clearly perturbed, with excess mature B and T cells accumulating. Rather than the follicular lymphomas typical of vavP-BCL-2 mice, aging vavP-Mcl-1 mice were primarily susceptible to lymphomas having the phenotype of a stem/progenitor cell (11 of 30 tumors) or pre-B cell (12 of 30 tumors). Mcl-1 overexpression dramatically accelerated Myc-driven lymphomagenesis. Most vavP-Mcl-1/ Eμ-Myc mice died around birth, and transplantation of blood from bitransgenic E18 embryos into unirradiated mice resulted in stem/progenitor cell tumors. Furthermore, lethally irradiated mice transplanted with E13 fetal liver cells from Mcl-1/Myc bitransgenic mice uniformly died of stem/progenitor cell tumors. When treated in vivo with cyclophosphamide, tumors coexpressing Mcl-1 and Myc transgenes were significantly more resistant than conventional Eμ-Myc lymphomas. Collectively, these results demonstrate that Mcl-1 overexpression renders hematopoietic cells refractory to many cytotoxic insults, perturbs lymphopoiesis and promotes malignant transformation of hematopoietic stem and progenitor cells.


2019 ◽  
Vol 42 (7) ◽  
pp. 374-379 ◽  
Author(s):  
Hirotoshi Miyoshi ◽  
Chiaki Sato ◽  
Yuichiro Shimizu ◽  
Misa Morita

With the aim of establishing an effective method to expand hematopoietic stem/progenitor cells for application in hematopoietic stem cell transplantation, we performed ex vivo expansion of hematopoietic stem/progenitor cells derived from mouse fetal liver cells in three-dimensional cocultures with stromal cells. In these cocultures, stromal cells were first cultured within three-dimensional scaffolds to form stromal layers and then fetal liver cells containing hematopoietic cells were seeded on these scaffolds to expand the hematopoietic cells over the 2 weeks of coculture in a serum-containing medium without the addition of cytokines. Prior to coculture, stromal cell growth was suppressed by treatment with the DNA synthesis inhibitor mitomycin C, and its effect on hematopoietic stem/progenitor cell expansion was compared with that in control cocultures in which fetal liver cells were cocultured with three-dimensional freeze-thawed stromal cells. After coculture with mitomycin C-treated stromal cells, we achieved a several-fold expansion of the primitive hematopoietic cells (c-kit+hematopoietic progenitor cells >7.8-fold, and CD34+hematopoietic stem/progenitor cells >3.5-fold). Compared with control cocultures, expansion of hematopoietic stem/progenitor cells tended to be lower, although that of hematopoietic progenitor cells was comparable. Thus, our results suggest that three-dimensional freeze-thawed stromal cells have higher potential to expand hematopoietic stem/progenitor cells compared with mitomycin C-treated stromal cells.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2284-2288 ◽  
Author(s):  
Hideo Ema ◽  
Hiromitsu Nakauchi

Abstract The activity of hematopoietic stem cells in the developing liver of a C57BL/6 mouse embryo was quantified by a competitive repopulation assay. Different doses of fetal liver cells at days 11 to 18 of gestation were transplanted into irradiated mice together with 2 × 105 adult bone marrow cells. A long-term repopulation in myeloid-, B-cell, and T-cell lineage by fetal liver cells was evaluated at 20 weeks after transplantation. At day 12 of gestation multilineage repopulating activity was first detected in the liver as 50 repopulating units (RU) per liver. The number of RU per liver increased 10-fold and 33-fold by day 14 and day 16 of gestation, and decreased thereafter, suggesting a single wave of stem cell development in the fetal liver. A limiting dilution analysis revealed that the frequency of competitive repopulating units (CRU) in fetal liver cells at day 12 of gestation was similar to that at day 16 of gestation. Because of an increase of total fetal liver cell number, the absolute number of CRU per liver from days 12 to 16 of gestation increased 38-fold. Hence, the mean activity of stem cells (MAS) that is given by RU per CRU remained constant from days 12 to 16 of gestation. From these data we conclude that hematopoietic stem cells expand in the fetal liver maintaining their level of repopulating potential.


2019 ◽  
Vol 3 (3) ◽  
pp. 419-431 ◽  
Author(s):  
Fang Dong ◽  
Haitao Bai ◽  
Xiaofang Wang ◽  
Shanshan Zhang ◽  
Zhao Wang ◽  
...  

Abstract The cell of origin, defined as the normal cell in which the transformation event first occurs, is poorly identified in leukemia, despite its importance in understanding of leukemogenesis and improving leukemia therapy. Although hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were used for leukemia models, whether their self-renewal and differentiation potentials influence the initiation and development of leukemia is largely unknown. In this study, the self-renewal and differentiation potentials in 2 distinct types of HSCs (HSC1 [CD150+CD41−CD34−Lineage−Sca-1+c-Kit+ cells] and HSC2 [CD150−CD41−CD34−Lineage−Sca-1+c-Kit+ cells]) and 3 distinct types of HPCs (HPC1 [CD150+CD41+CD34−Lineage−Sca-1+c-Kit+ cells], HPC2 [CD150+CD41+CD34+Lineage−Sca-1+c-Kit+ cells], and HPC3 [CD150−CD41−CD34+Lineage−Sca-1+c-Kit+ cells]) were isolated from adult mouse bone marrow, and examined by competitive repopulation assay. Then, cells from each population were retrovirally transduced to initiate MLL-AF9 acute myelogenous leukemia (AML) and the intracellular domain of NOTCH-1 T-cell acute lymphoblastic leukemia (T-ALL). AML and T-ALL similarly developed from all HSC and HPC populations, suggesting multiple cellular origins of leukemia. New leukemic stem cells (LSCs) were also identified in these AML and T-ALL models. Notably, switching between immunophenotypical immature and mature LSCs was observed, suggesting that heterogeneous LSCs play a role in the expansion and maintenance of leukemia. Based on this mouse model study, we propose that acute leukemia arises from multiple cells of origin independent of the self-renewal and differentiation potentials in hematopoietic stem and progenitor cells and is amplified by LSC switchover.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2399-2407 ◽  
Author(s):  
Hong Qian ◽  
Elisabeth Georges-Labouesse ◽  
Alexander Nyström ◽  
Anna Domogatskaya ◽  
Karl Tryggvason ◽  
...  

Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However, the molecular interactions that control homing of HSCs, in particular, of fetal HSCs, are not well understood. Herein, we studied the role of the α6 and α4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin α6 gene–deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin−Sca-1+Kit+ (LSK) cells. Deletion of integrin α6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands, laminins-411 and -511 in vitro, and significantly reduced homing of HPCs to BM. In contrast, the anti-integrin α6 antibody did not inhibit BM homing of HSCs. In agreement with this, integrin α6 gene–deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast, inhibition of integrin α4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM, indicating distinct functions for integrin α6 and α4 receptors during homing of fetal HSCs and HPCs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3637-3637
Author(s):  
Vincenzo Giambra ◽  
Sonya H Lam ◽  
Miriam Belmonte ◽  
Sam Gusscott ◽  
Sohrab Salehi ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of immature T-cell progenitors, characterized by activating NOTCH1 mutations in over 50% of children and adult cases. Although intensive multiagent chemotherapy achieves cure in most pediatric patients, the majority of adults succumb quickly to their disease. The basis for this divergence is likely multifactorial, but we sought in this study to investigate whether cell intrinsic features might contribute to the disparate biologies in pediatric and adult patients. In our prior abstract, we modeled pediatric and adult leukemias by transduction of hematopoietic stem/progenitor cells (HSPC) derived from mouse fetal liver (FL) and adult bone marrow (ABM) with activated NOTCH1 virus followed by transplantation into histocompatible recipient animals. We observed that whereas FL- and ABM-derived HSPC generate similar primary acute T-cell leukemias in terms of penetrance, latency, disease burden/distribution, and immunophenotype, FL leukemias exhibit much greater cycling activity than ABM leukemias, yet are dramatically impaired in their ability to propagate disease in secondary and tertiary recipients compared to ABM leukemias. Using a combination of gene expression profiling and in vitro culture assays, we attributed this differential behavior to NOTCH1-induced autocrine IGF signaling that is operative in FL, but not ABM-derived HSPC. Here we report that NOTCH1 mediates its effects on IGF1 in FL-derived HSPC directly by physical occupancy over the IGF1 promoter in a dimerization-dependent fashion. As well, increased NOTCH1 occupancy at the IGF1 promoter region in FL tissues is associated with reduced histone H3K27 trimethylation (a mark of transcriptionally silent chromatin), yet there is equivalent histone H3K4 trimethylation (a mark identifying transcriptionally active promoters) in both FL and ABM tissues, suggesting that NOTCH1 may be responsible for interconverting the IGF1 locus between active and inactive, but poised chromatin states. NOTCH1 occupancy is also associated with enhanced physical interactions between the IGF1 promoter region and distant genomic loci as revealed by circularized chromosome conformation capture (4C) assay and confirmed by chromosome conformation capture (3C) assay, including sites with H3K4 monomethylation (a mark of transcriptional enhancers) suggesting that NOTCH1 promotes "looping in" of distant enhancer elements that drive IGF1 expression in FL tissues. We conclude from these studies that NOTCH1 enacts differential, developmental stage-specific transcriptional programs by a combination of local epigenetic patterning and long-range genomic interactions. These findings support the notion that pediatric and adult T-ALL may potentially be regarded as related, but biologically distinct diseases, and that novel, age-specific therapies that exploit these differences may improve clinical outcomes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3757-3762 ◽  
Author(s):  
Hsiang-Chun Hsu ◽  
Hideo Ema ◽  
Mitsujiro Osawa ◽  
Yukio Nakamura ◽  
Toshio Suda ◽  
...  

Tie-2 receptor tyrosine kinase expressed in endothelial and hematopoietic cells is believed to play a role in both angiogenesis and hematopoiesis during development of the mouse embryo. This article addressed whether Tie-2 is expressed on fetal liver hematopoietic stem cells (HSCs) at day 14 of gestation. With the use of anti–Tie-2 monoclonal antibody, its expression was detected in approximately 7% of an HSC population of Kit-positive, Sca-1–positive, lineage-negative or -low, and AA4.1-positive (KSLA) cells. These Tie-2–positive KSLA (T+ KSLA) cells represent 0.01% to 0.02% of fetal liver cells. In vitro colony and in vivo competitive repopulation assays were performed for T+ KSLA cells and Tie-2–negative KSLA (T− KSLA) cells. In the presence of stem cell factor, interleukin-3, and erythropoietin, 80% of T+ KSLA cells formed colonies in vitro, compared with 40% of T− KSLA cells. Long-term multilineage repopulating cells were detected in T+ KSLA cells, but not in T− KSLA cells. An in vivo limiting dilution analysis revealed that at least 1 of 8 T+ KSLA cells were such repopulating cells. The successful secondary transplantation initiated with a limited number of T+ KSLA cells suggests that these cells have self-renewal potential. In addition, engraftment of T+ KSLA cells in conditioned newborn mice indicates that these HSCs can be adapted equally by the adult and newborn hematopoietic environments. The data suggest that T+ KSLA cells represent HSCs in the murine fetal liver.


Sign in / Sign up

Export Citation Format

Share Document