scholarly journals Machine Learning Integrates Genomic Signatures for Subclassification Beyond Primary and Secondary Acute Myeloid Leukemia

Blood ◽  
2021 ◽  
Author(s):  
Hassan Awada ◽  
Arda Durmaz ◽  
Carmelo Gurnari ◽  
Ashwin Kishtagari ◽  
Manja Meggendorfer ◽  
...  

While genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML (pAML) and secondary AML (sAML) has shown to variably correlate with genetic patterns. Perhaps, the combinatorial complexity and heterogeneity of AML genomic architecture have precluded, so far, the genomic-based subclassification to identify distinct molecularly-defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6,788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biological correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphological AML classifications. We performed unsupervised analysis by applying Bayesian Latent Class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphological and clinically-defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7,000 AML patients is too vast for traditional prediction methods, however, machine learning methods allowed for the definition of novel genomic AML subclasses indicating that traditional pathomorphological definitions may be less reflective of overlapping pathogenesis.

Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5352-5361 ◽  
Author(s):  
Jih-Luh Tang ◽  
Hsin-An Hou ◽  
Chien-Yuan Chen ◽  
Chieh-Yu Liu ◽  
Wen-Chien Chou ◽  
...  

AbstractSomatic mutation of the AML1/RUNX1(RUNX1) gene is seen in acute myeloid leukemia (AML) M0 subtype and in AML transformed from myelodysplastic syndrome, but the impact of this gene mutation on survival in AML patients remains unclear. In this study, we sought to determine the clinical implications of RUNX1 mutations in 470 adult patients with de novo non-M3 AML. Sixty-three distinct RUNX1 mutations were identified in 62 persons (13.2%); 32 were in N-terminal and 31, C-terminal. The RUNX1 mutation was closely associated with male sex, older age, lower lactic dehydrogenase value, French-American-British M0/M1 subtypes, and expression of HLA-DR and CD34, but inversely correlated with CD33, CD15, CD19, and CD56 expression. Furthermore, the mutation was positively associated with MLL/PTD but negatively associated with CEBPA and NPM1 mutations. AML patients with RUNX1 mutations had a significantly lower complete remission rate and shorter disease-free and overall survival than those without the mutation. Multivariate analysis demonstrated that RUNX1 mutation was an independent poor prognostic factor for overall survival. Sequential analysis in 133 patients revealed that none acquired novel RUNX1 mutations during clinical courses. Our findings provide evidence that RUNX1 mutations are associated with distinct biologic and clinical characteristics and poor prognosis in patients with de novo AML.


Morphologie ◽  
2019 ◽  
Vol 103 (342) ◽  
pp. 69 ◽  
Author(s):  
Julie Mondet ◽  
Caroline Lo Presti ◽  
Catherine Garrel ◽  
Kristina Skaare ◽  
Clara Mariette ◽  
...  

Author(s):  
Michael Heuser ◽  
B. Douglas Smith ◽  
Walter Fiedler ◽  
Mikkael A. Sekeres ◽  
Pau Montesinos ◽  
...  

AbstractThis analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395–1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038.


2015 ◽  
Vol 15 ◽  
pp. S181-S182
Author(s):  
Koji Sasaki ◽  
Elias Jabbour ◽  
Hagop Kantarjian ◽  
Jorge Cortes ◽  
Guillermo Garcia-Manero ◽  
...  

2008 ◽  
Vol 88 (5) ◽  
pp. 602-605
Author(s):  
Tohru Inaba ◽  
Hiroshi Nishimura ◽  
Junko Saito ◽  
Yoko Yamane ◽  
Takuya Nakatani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document