scholarly journals Plasmin taking contact pathway to inflame liver

Blood ◽  
2021 ◽  
Vol 138 (3) ◽  
pp. 208-209
Author(s):  
Yi Wu
Keyword(s):  
Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3942-3951 ◽  
Author(s):  
Joke Konings ◽  
José W. P. Govers-Riemslag ◽  
Helen Philippou ◽  
Nicola J. Mutch ◽  
Julian I. Borissoff ◽  
...  

Abstract Recent data indicate an important contribution of coagulation factor (F)XII to in vivo thrombus formation. Because fibrin structure plays a key role in clot stability and thrombosis, we hypothesized that FXII(a) interacts with fibrin(ogen) and thereby regulates clot structure and function. In plasma and purified system, we observed a dose-dependent increase in fibrin fiber density and decrease in turbidity, reflecting a denser structure, and a nonlinear increase in clot stiffness with FXIIa. In plasma, this increase was partly independent of thrombin generation, as shown in clots made in prothrombin-deficient plasma initiated with snake venom enzyme and in clots made from plasma deficient in FXII and prothrombin. Purified FXII and α-FXIIa, but not β-FXIIa, bound to purified fibrinogen and fibrin with nanomolar affinity. Immunostaining of human carotid artery thrombi showed that FXII colocalized with areas of dense fibrin deposition, providing evidence for the in vivo modulation of fibrin structure by FXIIa. These data demonstrate that FXIIa modulates fibrin clot structure independently of thrombin generation through direct binding of the N-terminus of FXIIa to fibrin(ogen). Modification of fibrin structure by FXIIa represents a novel physiologic role for the contact pathway that may contribute to the pathophysiology of thrombosis.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Raquel López-Gálvez ◽  
María Eugenia de la Morena-Barrio ◽  
Alberto López-Lera ◽  
Monika Pathak ◽  
Antonia Miñano ◽  
...  

Abstract Background Congenital disorders of glycosylation (CDG) are rare diseases with impaired glycosylation and multiorgan disfunction, including hemostatic and inflammatory disorders. Factor XII (FXII), the first element of the contact phase, has an emerging role in hemostasia and inflammation. FXII deficiency protects against thrombosis and the p.Thr309Lys variant is involved in hereditary angioedema through the hyperreactivity caused by the associated defective O-glycosylation. We studied FXII in CDG aiming to supply further information of the glycosylation of this molecule, and its functional and clinical effects. Plasma FXII from 46 PMM2-CDG patients was evaluated by coagulometric and by Western Blot in basal conditions, treated with N-glycosydase F or activated by silica or dextran sulfate. A recombinant FXII expression model was used to validate the secretion and glycosylation of wild-type and variants targeting the two described FXII N-glycosylation sites (p.Asn230Lys; p.Asn414Lys) as well as the p.Thr309Lys variant. Results PMM2-CDG patients had normal FXII levels (117%) but high proportions of a form lacking N-glycosylation at Asn414. Recombinant FXII p.Asn230Lys, and p.Asn230Lys&p.Asn414Lys had impaired secretion and increased intracellular retention compared to wild-type, p.Thr309Lys and p.Asn414Lys variants. The hypoglycosylated form of PMM2-CDG activated similarly than FXII fully glycosylated. Accordingly, no PMM2-CDG had angioedema. FXII levels did not associate to vascular events, but hypoglycosylated FXII, like hypoglycosylated transferrin, antithrombin and FXI levels did it. Conclusions N-glycosylation at Asn230 is essential for FXII secretion. PMM2-CDG have high levels of FXII lacking N-glycosylation at Asn414, but this glycoform displays similar activation than fully glycosylated, explaining the absence of angioedema in CDG.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1024-1024
Author(s):  
Matthew F Whelihan ◽  
Kenneth G. Mann

Abstract The procofactors FV and FVIII are activated by thrombin, FXa and plasmin. During contact pathway-initiated thrombin generation, FXIa activates FIX thus feeding into the coagulation cascade; however, the procofactors FVIII and FV must be activated to achieve a robust level of thrombin generation. We tested the hypothesis that FXIa can activate FV and FVIII. FV (1uM) was subjected to FXIa (100nM) proteolysis. During the reaction the relative activity and integrity were measured at selected time points using a one stage PT clotting assay and SDS-PAGE. Over the 60 minute time course, FV showed a transient 50% activation followed by a reduction in activity to 20%. SDS-PAGE analyses showed that proteolysis of FV by FXIa initially generated fragments with mobilities similar to those produced by α-thrombin. This activation and inactivation pattern suggested that FXIa makes the required activation cleavages at R709, R1018 and R1545 coincidently with inactivating proteolyses. FV was activated with α-thrombin and the reaction quenched by the addition of hirudin prior to FXIa proteolysis. FVa’s cofactor activity was reduced by 50% after 30 min and 80% after 60 min. Analysis of the FXIa cleavage process by SDS-PAGE under reducing conditions showed no intact heavy chain and significant proteolysis of the light chain after 30 minutes. In addition to the Mr = 105000 (HC) and Mr = 75000 (LC), six new products were identified by SDS-PAGE under reducing conditions: Mr = 54000, 50000, 48000, 30000, 22000 and 20000. NH2-terminal sequence analysis indicated a single cleavage in the light chain at R1765 yielding the products Mr = 50000, 48000: (1766à2196) and the Mr = 30000 (1546à1764), also seen with plasmin and FXa. A cleavage in the heavy chain represented by the Mr = 22000, 20000 (R511à709) fragments is also observed. Sequence analysis determined that the Mr = 54000 fragment represented the NH2-terminus of the heavy chain. Western analysis using a heavy chain antibody showed a transient band Mr = 75000 lying under the light chain that is consistent with an initial cleavage R510. A subsequent cleavage, which is coincident with a decrease in the cofactor’s activity, results in a Mr = 30000 product which is consistent with a cleavage somewhere COOH-terminal to R306(R316?). Activity analyses suggest that the initial cleavage in the heavy chain at R510 leads to a FVaXla 1 molecule with similar activity (50%) to that seen in FVa cleaved by APC in the absence of phospholipid. The FVaXla 1 was treated with APC resulting in complete inactivation of the cofactor. We have also observed an analogous FXIa cleavage pattern in FVIII; however sequencing analysis has not yet been attempted. These data suggest that factor XIa may play a role in procofactor activation and inactivation of FV and FVIII in the context of contact pathway-initiated blood coagulation. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3220-3220
Author(s):  
Norah Verbout ◽  
Asako Itakura ◽  
Joseph Aslan ◽  
Erik Tucker ◽  
Andras Gruber ◽  
...  

Abstract Abstract 3220 Neutrophils play a vital role in innate immunity. Activated neutrophils can release proteolytic enzymes capable of neutralizing microbes and contributing importantly to host-defense. In severe sepsis, microbial components and pro-inflammatory cytokines can contribute to excess systemic neutrophil activation, resulting in tissue damage and organ failure. Thus, regulation of neutrophil activation and factor release is critical during pathologic conditions. Recent data indicate that components of the contact system modulate numerous inflammatory mediators during severe sepsis, but the exact role of the contact pathway in host-defense is not well understood. Inhibition of factor XII (FXII) in septic baboons reduces circulating neutrophil elastase (NE), a potent cytolytic enzyme that is increased during sepsis and implicated in organ failure. In vitro studies also indicate that both plasma kallikrein and FXIIa are capable of directly inducing NE release. While it is apparent that factors of the contact system interact with neutrophils, the molecular mechanisms by which these factors modulate neutrophil function have not been established. We therefore examined factor XI (FXI) neutrophil interactions and the cellular signaling pathways regulating FXIIa neutrophil stimulation. Human neutrophils were isolated from peripheral blood and resuspended in HBSS at a concentration of 0.5 ×106/ml. Cells were treated with FXI, FXIa, FXII, or FXIIa with or without fMLP (1 μM) stimulation, and the release of NE was assayed in the cell supernatants via ELISA. FXI, FXIa or FXII had no direct stimulatory effect on NE release compared to vehicle. While neither FXI nor FXII had any inhibitory effect on fMLP induced NE release, FXIa (10 μg/ml) modestly reduced fMLP-induced NE release by 20% (n=3). FXIIa (3, 10, 30 μg/ml) dose-dependently increased NE release in the presence of cytochalasin B (5 μg/ml), consistent with published data. To examine the mechanism by which FXIIa induces NE release, neutrophils were pretreated with signaling inhibitors and subsequently activated with FXIIa (30 μg/ml). Mammalian target of rapamycyin (mTOR) is a downstream serine/threonine kinase of the PI3K/AKT pathway that integrates signals from the microenvironment such as cytokines and growth factors. It is known that inhibition of mTORC2 abrogates neutrophil polarization and directed migration, thus we examined the role of rapamycin complex 1 and 2 (mTORC1/2) in mediating NE release. Pretreatment of cells with RAD001 (20 nM), an mTORC1 inhibitor had no effect on FXIIa-induced NE release, whereas the combined mTORC1/mTORC2 inhibitor, pp242 (100 nM) abrogated FXIIa-induced NE release, suggesting that components of the mTORC2 pathway contribute to NE release. Pretreatment with EHT 1864 (50 uM), a Rac inhibitor, significantly potentiated NE release induced by either fMLP or FXIIa, suggesting that Rac is also capable of modulating FXIIa signaling. Taken together, these results suggest that coagulation factors FXIa and FXIIa differentially modulate neutrophil function, and that the mTOR and Rac signaling pathways participate in FXIIa stimulated neutrophil activation. These data suggest that the contact pathway is involved in neutrophil stimulation through mTOR and Rac signaling, and thus modulating these pathways could be a potential therapeutic strategy for limiting excess neutrophil activation. Disclosures: Gruber: Aronora, LLC: Consultancy, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. 4134-4141 ◽  
Author(s):  
Jessica L. MacQuarrie ◽  
Alan R. Stafford ◽  
Jonathan W. Yau ◽  
Beverly A. Leslie ◽  
Trang T. Vu ◽  
...  

Abstract Histidine-rich glycoprotein (HRG) circulates in plasma at a concentration of 2μM and binds plasminogen, fibrinogen, and thrombospondin. Despite these interactions, the physiologic role of HRG is unknown. Previous studies have shown that mice and humans deficient in HRG have shortened plasma clotting times. To better understand this phenomenon, we examined the effect of HRG on clotting tests. HRG prolongs the activated partial thromboplastin time in a concentration-dependent fashion but has no effect on tissue factor–induced clotting, localizing its effect to the contact pathway. Plasma immunodepleted of HRG exhibits a shortened activated partial thromboplastin time that is restored to baseline with HRG replenishment. To explore how HRG affects the contact pathway, we examined its binding to factors XII, XIIa, XI, and XIa. HRG binds factor XIIa with high affinity, an interaction that is enhanced in the presence of Zn2+, but does not bind factors XII, XI, or XIa. In addition, HRG inhibits autoactivation of factor XII and factor XIIa–mediated activation of factor XI. These results suggest that, by binding to factor XIIa, HRG modulates the intrinsic pathway of coagulation, particularly in the vicinity of a thrombus where platelet release of HRG and Zn2+ will promote this interaction.


Sign in / Sign up

Export Citation Format

Share Document