Characterization of the Interaction between Thrombin and a Pentapeptide That Interferes with Anion Binding Exosite I of the Enzyme.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1719-1719
Author(s):  
Tivadar Orban ◽  
Adrian Grozav ◽  
Michael Buckys ◽  
Valentin Gogonea3 ◽  
Michael Kalafatis4

Abstract We have recently characterized a pentapeptide, DYDYQ, from coagulation factor V (Beck et. al. 2004J. Biol. Chem.279, 3084) that inhibits both factor V activation and prothrombinase function. The pentapeptide does not interfere with the active site of thrombin but rather interferes with substrate attachment. Our aim was to characterize at the molecular level the binding site of DYDYQ on thrombin. First we used computational methods (blind and focused docking) to propose a hypothetical binding site. Blind docking of the pentapeptide (structure obtained from a 20 ns molecular dynamics simulation) on thrombin was performed using a docking grid with large spacing. This approach provided us a favorable site (−4.8 kcal/mol) that was further investigated using a smaller spaced docking grid. Hydrogen bonding was analyzed between thrombin and DYDYQ. The final free energy of binding was −9.69 kcal/mol. Amino acids Y76R77I79I82 from thrombin anion binding exosite I (ABE-I), were identified to participate in the interaction of the enzyme with DYDYQ. We next investigated the Thrombin-DYDYQ interaction following cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC) and mass spectrometry. In these experiments purified thrombin was inhibited in the active site with a chloromethyl ketone, and treated with the DYDYQ peptide in the presence of EDC. Two bands were observed, one corresponding to thrombin cross linked to the peptide (CT) and another band corresponding to free thrombin (T). The proteins were either (i) stained with Coomassie blue for further digestion with trypsin or (ii) transferred to nitrocellulose membranes following by staining with Coomassie blue for treatment with cyanogen bromide (CNBr). Stained bands were isolated from the gel and subjected to trypsin digestion and liquid chromatography/mass spectrometry (LC-MS). Following trypsin digestion thrombin presence in both, T and CT samples was confirmed and the peptides identified in both samples covered approximately 63% of the entire thrombin sequence. The only difference observed between the sets of peptides obtained from T and CT following digestion with trypsin, was the peptide N78IEKISM*LEK87 (M* = oxidized Methionine), which was present in the T sample but was absent in the CT sample. These results suggest that the binding site of DYDYQ to thrombin is localized in the area of the above mentioned peptide protecting it from hydrolysis by trypsin. We next analyzed T and CT by LC-MS following CNBr digestion. Three important bands (peptide products from CNBr digestion) were detected in the sample containing the T, having an approximate molecular weight of ~4,500, ~7,500, and ~9,000. CNBr digestion products of CT lacked the median band (peptide mass: ~7,500). This band corresponded to the sequence L33…Y76ERN78IEKISM84 - as confirmed by ESI-ion trap mass spectrometry amino acid sequence of its first eleven amino acid residues. The difference between the two in gel CNBr digest profiles of T and CT, confirms the conclusion drawn from the MS analysis of the triptic digests which in turn was predicted by our computational analyses. Overall our data demonstrate that 1) amino acid residues Y76R77I79I82 from thrombin provide an interactive site for DYDYQ, and 2) our results from computational methods that identify protein-peptide interaction are valid and can be confirmed by mass spectrometry.

2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


Author(s):  
Wei He ◽  
Wenhui Zhang ◽  
Zhenhua Chu ◽  
Yu Li

The aim of this paper is to explore the mechanism of the change in oestrogenic activity of PCBs molecules before and after modification by designing new PCBs derivatives in combination with molecular docking techniques through the constructed model of oestrogenic activity of PCBs molecules. We found that the weakened hydrophobic interaction between the hydrophobic amino acid residues and hydrophobic substituents at the binding site of PCB derivatives and human oestrogen receptor alpha (hERα) was the main reason for the weakened binding force and reduced anti-oestrogenic activity. It was consistent with the information that the hydrophobic field displayed by the 3D contour maps in the constructed oestrogen activity CoMSIA model was one of the main influencing force fields. The hydrophobic interaction between PCB derivatives and oestrogen-active receptors was negatively correlated with the average distance between hydrophobic substituents and hydrophobic amino acid residues at the hERα-binding site, and positively correlated with the number of hydrophobic amino acid residues. In other words, the smaller the average distance between the hydrophobic amino acid residues at the binding sites between the two and the more the number of them, and the stronger the oestrogen activity expression degree of PCBS derivative molecules. Therefore, hydrophobic interactions between PCB derivatives and the oestrogen receptor can be reduced by altering the microenvironmental conditions in humans. This reduces the ability of PCB derivatives to bind to the oestrogen receptor and can effectively modulate the risk of residual PCB derivatives to produce oestrogenic activity in humans.


2009 ◽  
Vol 633 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Mostafa Pournamdari ◽  
Ahmed Saadi ◽  
Elizabeth Ellis ◽  
Ruth Andrew ◽  
Brian Walker ◽  
...  

Biochemistry ◽  
1998 ◽  
Vol 37 (41) ◽  
pp. 14605-14612 ◽  
Author(s):  
Gina J. Mancini-Samuelson ◽  
Volker Kieweg ◽  
Kim Marie Sabaj ◽  
Sandro Ghisla ◽  
Marian T. Stankovich

Sign in / Sign up

Export Citation Format

Share Document