Activation of the P38 MAPK Pathway Results in Ubiquitin-Proteasome Degradation of the PML Tumor Suppressor Protein.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2553-2553
Author(s):  
Pier P. Scaglioni ◽  
Thomas Yung ◽  
Lu F. Cai ◽  
Pier Paolo Pandolfi

Abstract The promyelocytic leukemia gene (PML) is involved in the t(15;17) chromosomal translocation of acute promyelocytic leukemia (APL). PML is a tumor suppressor whose inactivation is causal in leukemogenesis. PML exerts its function by interacting with several tumor suppressor proteins such as p53, pRb, Smad2, Smad3 and CBP/p300. We have recently demonstrated that PML protein is frequently lost in a large portion of hematologic and solid tumors. In these tumors, PML gene sequence and RNA expression were wild type. These findings suggest that PML protein loss is mediated by a post-translational mechanism. We investigated whether PML protein loss is due to degradation via the ubiquitin/proteasome system. Several tumor cell lines have absent or reduced levels of PML protein when compared to untransformed primary cells. We found that in these cases, PML protein half-life is reduced as a result of increased protein degradation. In addition, PML ubiquitinylation is markedly increased in tumor derived cell lines. Incubation of PML negative tumor cell lines with proteasome inhibitors restored wild type PML protein levels. We also defined the minimal PML sequence that is required for ubiquitinylation. This region is in the immediate proximity to p38 mitogen-activated protein kinase consensus sites (p38 MAPK). The p38 MAPK kinase responds to cellular stress, such as osmotic shock, increased free radicals and hypoxia. Notably, p38 MAPK activation has been associated with poor prognosis in breast cancer and follicular lymphoma (Esteva et al. Cancer, 2003. Elenitoba-Johnson et al. Proc Natl Acad Sci U S A. 2003). We therefore, tested whether PML and p38 MAPK functionally interact. Activation of p38 MAPK signaling resulted in dramatic PML degradation due to increased ubiquitinylation. Furthermore, activation of P38 MAPK resulted in increased PML phosphorylation and sumoylation. Treatment with specific inhibitors of p38 MAPK or expression of a p38 dominant negative mutant also inhibited p38 induced PML degradation. In addition, we demonstrated that PML is a direct target of p38 MAPK activity. Bacterially expressed PML is a direct substrate of p38 MAPK in an in vitro kinase assay. The p38 MAPK phosphorylation sites present in the PML protein were mapped. Alanine to serine substitutions of predicted p38 MAPK sites abolished PML phosphorylation by p38 MAPK in vitro and abrogated p38 MAPK dependent PML degradation within the cell. In addition, co-immunoprecipitation experiments clearly demonstrated that PML binds to the active form of p38 MAPK. Confocal immunofluorescence analysis revealed that both activated p38 MAPK colocalize with PML in the nuclear body. These data indicate that the p38 MAPK signaling pathway results in ubiquitin/proteasome mediated PML degradation and imply that MAPK signaling pathways may contribute to oncogenesis by inducing the degradation of the PML tumor suppressor protein. Pharmacological manipulation of this pathway may prove useful for the treatment of tumors that lose PML protein.

1991 ◽  
Vol 11 (1) ◽  
pp. 1-11
Author(s):  
P Johnson ◽  
D Gray ◽  
M Mowat ◽  
S Benchimol

Inactivation of the cellular p53 gene is a common feature of Friend virus-induced murine erythroleukemia cell lines and may represent a necessary step in the progression of this disease. As well, frequent loss or mutation of p53 alleles in diverse human tumors is consistent with the view of p53 as a tumor suppressor gene. To examine the significance of p53 gene inactivation in tumorigenesis, we have attempted to express transfected wild-type p53 in three p53-negative tumor cell lines: murine DP16-1 Friend erythroleukemia cells, human K562 cells, and SKOV-3 cells. We found that aberrant p53 proteins, which differ from wild-type p53 by a single amino acid substitution, were expressed stably in these cells, whereas wild-type p53 expression was not tolerated. The inability of p53-negative tumor cell lines to support long-term expression of wild-type p53 protein is consistent with the view that p53 is a tumor suppressor gene.


1991 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
P Johnson ◽  
D Gray ◽  
M Mowat ◽  
S Benchimol

Inactivation of the cellular p53 gene is a common feature of Friend virus-induced murine erythroleukemia cell lines and may represent a necessary step in the progression of this disease. As well, frequent loss or mutation of p53 alleles in diverse human tumors is consistent with the view of p53 as a tumor suppressor gene. To examine the significance of p53 gene inactivation in tumorigenesis, we have attempted to express transfected wild-type p53 in three p53-negative tumor cell lines: murine DP16-1 Friend erythroleukemia cells, human K562 cells, and SKOV-3 cells. We found that aberrant p53 proteins, which differ from wild-type p53 by a single amino acid substitution, were expressed stably in these cells, whereas wild-type p53 expression was not tolerated. The inability of p53-negative tumor cell lines to support long-term expression of wild-type p53 protein is consistent with the view that p53 is a tumor suppressor gene.


2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


2013 ◽  
Vol 16 (1) ◽  
pp. 137-142
Author(s):  
Farooq I. Mohammed ◽  
◽  
Farah T. Abdullah ◽  
Shaimaa Y. Abdulfttah ◽  
◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Juho-Matti Renko ◽  
Arun Kumar Mahato ◽  
Tanel Visnapuu ◽  
Konsta Valkonen ◽  
Mati Karelson ◽  
...  

Background: Parkinson’s disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF’s receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP +-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and could have protected dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying therapy for PD.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 92
Author(s):  
Bashir Lawal ◽  
Yen-Lin Liu ◽  
Ntlotlang Mokgautsi ◽  
Harshita Khedkar ◽  
Maryam Rachmawati Sumitra ◽  
...  

Signal transducer and activator of transcription 3 (STAT3) is a transcriptional regulator of a number of biological processes including cell differentiation, proliferation, survival, and angiogenesis, while cyclin-dependent kinases (CDKs) are a critical regulator of cell cycle progression. These proteins appear to play central roles in angiogenesis and cell survival and are widely implicated in tumor progression. In this study, we used the well-characterized US National Cancer Institute 60 (NCI60) human tumor cell lines to screen the in vitro anti-cancer activities of our novel small molecule derivatives (NSC765690 and NSC765599) of salicylanilide. Furthermore, we used the DTP-COMPARE algorithm and in silico drug target prediction to identify the potential molecular targets, and finally, we used molecular docking to assess the interaction between the compounds and prominent potential targets. We found that NSC765690 and NSC765599 exhibited an anti-proliferative effect against the 60 panels of NCI human cancer cell lines, and dose-dependent cytotoxic preference for NSCLC, melanoma, renal, and breast cancer cell lines. Protein–ligand interactions studies revealed that NSC765690 and NSC765599 were favored ligands for STAT3/CDK2/4/6. Moreover, cyclization of the salicylanilide core scaffold of NSC765690 mediated its higher anti-cancer activities and had greater potential to interact with STAT3/CDK2/4/6 than did NSC765599 with an open-ring structure. NSC765690 and NSC765599 met the required safety and criteria of a good drug candidate, and are thus worthy of further in-vitro and in-vivo investigations in tumor-bearing mice to assess their full therapeutic efficacy.


2021 ◽  
Vol 269 ◽  
pp. 105621
Author(s):  
C.J. Fisher ◽  
A.T. Lejeune ◽  
M.J. Dark ◽  
O.M. Hernandez ◽  
K. Shiomitsu

2010 ◽  
Vol 65 (10) ◽  
pp. 1271-1278 ◽  
Author(s):  
Wilfredo Hernández ◽  
Juan Paz ◽  
Fernando Carrasco ◽  
Abraham Vaisberg ◽  
Jorge Manzur ◽  
...  

With the ligands 4-phenyl-1-(furan-2-carbaldehyde)thiosemicarbazone, HTSC1, (1), 4-phenyl-1- (5´-phenyl-furan-2-carbaldehyde)thiosemicarbazone, HTSC2 (2), o-methoxy-benzaldehydethiosemicarbazone, HTSC3 (3), and o-cyano-benzaldehydethiosemicarbazone, HTSC4 (4), the corresponding palladium(II) complexes, Pd(TSC1)2 (5), Pd(TSC2)2 (6), Pd(TSC3)2 (7), and Pd(TSC4)2 (8) were synthesized and characterized by elemental analysis and spectroscopic techniques. The crystal structure of Pd(TSC3)2 (7) was determined by single-crystal X-ray diffraction. Complex 7 shows a squareplanar geometry, where two deprotonated ligands are coordinated to the PdII center through the nitrogen and sulfur atoms in a trans arrangement. In vitro antitumor studies against different human tumor cell lines have revealed that the palladium(II) complexes 5- 8 are more cytotoxic (IC50 values in the range of 0.21 - 3.79 μM) than their corresponding ligands (1 - 4) (> 60 μM). These results indicate that the antiproliferative activity is enhanced when thiosemicarbazone ligands are coordinated to the metal. Among the studied palladium(II) complexes, 8 exhibits high antitumor activity on K562 chronic myelogenous leukemia cells with a low value of the inhibitory concentration (IC50 = 0.21 μM).


1992 ◽  
Vol 23 (4) ◽  
pp. 891-897 ◽  
Author(s):  
Amato J. Giaccia ◽  
Elizabeth A. Auger ◽  
Albert Koong ◽  
David J. Terris ◽  
Andrew I. Minchinton ◽  
...  

1997 ◽  
Vol 3 (9) ◽  
pp. 382-385
Author(s):  
Gerd Moeckel ◽  
Matthias Keil ◽  
Monica Hollstein ◽  
Bertold Spiegelhalder ◽  
Helmut Bartsch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document