Phosphoinositide3-Kinase Independent Regulation of Bruton’s Tyrosine Kinase in Platelet Immunoreceptor Signaling.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3536-3536
Author(s):  
Naohide Watanabe ◽  
Hideaki Nakajima ◽  
Atsushi Oda ◽  
Yasuo Ikeda ◽  
Makoto Handa

Abstract Phosphoinositide 3-kinase (PI3K)-dependent activation of Bruton’s tyrosine kinase (Btk) is an indispensable step of B cell antigen receptor (BCR)-mediated signaling leading to cell development and function. Btk is a cytosolic tyrosine kinase and its recruitment to the plasma membrane is a necessary step for its function. In the BCR pathway, class 1A PI3K is though to play a major role in Btk recruitment by generating the D3 phosphoinositide as a docking site for the pleckstrin homology (PH) domain of this effecter kinase. This widely accepted hypothesis has been tested in platelets from gene knockout or mutant mice, since the cells utilize sets of transducers in collagen-induced GP VI signaling similar to those involved in immunoreceptor tyrosine-based activation motif-mediated signaling cascades activated by BCR and T cell antigen receptor (TCR) ligation. GP VI stimulation by collagen or collagen related peptide induces cellular responses including aggregation, granular secretion and adhesion, and Btk/phospholipase C (PLC) γ2 activation. As compared with control mice, these cellular responses and PLCγ2 tyrosine phosphorylation of either Btk or PI3K p85α−/− platelets were readily impaired, but the defect was greater in Btk−/− than p85α−/− platelets. Most strikingly, platelets from double-deficiency mice showed a most severely compromised phenotype implying the existence of a PI3K-independent pathway for Btk activation. Moreover, unlike B cells, as compared with Btk−/− platelets, only subtle functional defect was observed in X-linked immunodeficiency (Xid) platelets in which PI3K-dependent Btk activation is selectively lacking due to a naturally occurring point mutation of the gene encoding the PH domain of the kinase. In the TCR pathway, an adaptor complex formed by LAT, Gads and SLP-76 proteins that is membrane-bound via LAT palmitoylation readily recruits Itk, which is a counterpart Btk/Tec family kinase specific for TCR. Indeed, Btk was found to be associated with LAT/Gads/SLP-76 complex in platelets in a GP VI-stimulation dependent manner, and this phenomenon was unaffected by either PI3K defect or PI3K inhibitor. These results indicate that in platelet immunoreceptor signaling, Btk function is under control, at least in part, by a mechanism independent of PI3K engagement.

FEBS Letters ◽  
2002 ◽  
Vol 514 (2-3) ◽  
pp. 260-262 ◽  
Author(s):  
Kazunori Inabe ◽  
Toshio Miyawaki ◽  
Richard Longnecker ◽  
Hiroyoshi Matsukura ◽  
Satoshi Tsukada ◽  
...  

1996 ◽  
Vol 184 (1) ◽  
pp. 31-40 ◽  
Author(s):  
M Takata ◽  
T Kurosaki

Defects in the gene encoding Bruton's tyrosine kinase (Btk) result in a disease called X-linked agammaglobulinemia, in which there is a profound decrease of mature B cells due to a block in B cell development. Recent studies have shown that Btk is tyrosine phosphorylated and activated upon B cell antigen receptor (BCR) stimulation. To elucidate the functions of this kinase, we examined BCR signaling of DT40 B cells deficient in Btk. Tyrosine phosphorylation of phospholipase C (PLC)-gamma 2 upon receptor stimulation was significantly reduced in the mutant cells, leading to the loss of both BCR-coupled phosphatidylinositol hydrolysis and calcium mobilization. Pleckstrin homology and Src-homology 2 domains of Btk were required for PLC-gamma 2 activation. Since Syk is also required for the BCR-induced PLC-gamma 2 activation, our findings indicate that PLC-gamma 2 activation is regulated by Btk and Syk through their concerted actions.


1998 ◽  
Vol 9 (8) ◽  
pp. 1981-1994 ◽  
Author(s):  
Wolfgang Nagel ◽  
Pierre Schilcher ◽  
Lutz Zeitlmann ◽  
Waldemar Kolanus

Recruitment of intracellular proteins to the plasma membrane is a commonly found requirement for the initiation of signal transduction events. The recently discovered pleckstrin homology (PH) domain, a structurally conserved element found in ∼100 signaling proteins, has been implicated in this function, because some PH domains have been described to be involved in plasma membrane association. Furthermore, several PH domains bind to the phosphoinositides phosphatidylinositol-(4,5)-bisphosphate and phosphatidylinositol-(3,4,5)-trisphosphate in vitro, however, mostly with low affinity. It is unclear how such weak interactions can be responsible for observed membrane binding in vivo as well as the resulting biological phenomena. Here, we investigate the structural and functional requirements for membrane association of cytohesin-1, a recently discovered regulatory protein of T cell adhesion. We demonstrate that both the PH domain and the adjacent carboxyl-terminal polybasic sequence of cytohesin-1 (c domain) are necessary for plasma membrane association and biological function, namely interference with Jurkat cell adhesion to intercellular adhesion molecule 1. Biosensor measurements revealed that phosphatidylinositol-(3,4,5)-trisphosphate binds to the PH domain and c domain together with high affinity (100 nM), whereas the isolated PH domain has a substantially lower affinity (2–3 μM). The cooperativity of both elements appears specific, because a chimeric protein, consisting of the c domain of cytohesin-1 and the PH domain of the β-adrenergic receptor kinase does not associate with membranes, nor does it inhibit adhesion. Moreover, replacement of the c domain of cytohesin-1 with a palmitoylation–isoprenylation motif partially restored the biological function, but the specific targeting to the plasma membrane was not retained. Thus we conclude that two elements of cytohesin-1, the PH domain and the c domain, are required and sufficient for membrane association. This appears to be a common mechanism for plasma membrane targeting of PH domains, because we observed a similar functional cooperativity of the PH domain of Bruton’s tyrosine kinase with the adjacent Bruton’s tyrosine kinase motif, a novel zinc-containing fold.


1993 ◽  
Vol 178 (5) ◽  
pp. 1523-1530 ◽  
Author(s):  
D B Straus ◽  
A Weiss

Recent work indicates that signaling events resulting from stimulation of the T cell antigen receptor (TCR) can be initiated by the CD3 complex (gamma, delta, epsilon) as well as the zeta chains of the receptor. To help characterize the signaling function of CD3 we examined its associated tyrosine kinase activity since induction of tyrosine phosphorylation is one of the earliest signaling events. Our results indicate that at least two kinases, lck and ZAP-70, contribute to the CD3-associated kinase activity. A likely target of this activity is the CD3 complex itself since we observed that TCR stimulation resulted in rapid tyrosine phosphorylation of the CD3 epsilon and delta chains. To examine the function of the CD3 epsilon chain in particular, we constructed a chimera that fused the extracellular and transmembrane domains of CD8 to the cytoplasmic domain of CD3 epsilon. This chimera demonstrated that CD3 epsilon was independently capable of associating with proteins having tyrosine kinase activity, including ZAP-70. Our results show that the kinase activity that associates with the CD3 complex has characteristics that are quite similar to the previously characterized zeta-associated kinase activity. This finding suggests that both these components of the TCR initiate signaling events using a common mechanism. However, differences in their signaling function could result from recognition of distinct substrates.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2357-2364 ◽  
Author(s):  
Shoji Hashimoto ◽  
Akihiro Iwamatsu ◽  
Masamichi Ishiai ◽  
Katsuya Okawa ◽  
Tomoki Yamadori ◽  
...  

Bruton’s tyrosine kinase (Btk) is a critical component in the B-cell antigen receptor (BCR)-coupled signaling pathway. Its deficiency in B cells leads to loss or marked reduction in the BCR-induced calcium signaling. It is known that this BCR-induced calcium signaling depends on the activation of phospholipase Cγ (PLCγ), which is mediated by Btk and another tyrosine kinase Syk and that the SH2 and pleckstrin homology (PH) domains of Btk play important roles in this activation process. Although the importance of the PH domain of Btk has been explained by its role in the membrane targeting of Btk, the functional significance of the SH2 domain in the calcium signaling has remained merely a matter of speculation. In this report, we identify that one of the major Btk-SH2 domain-binding proteins in B cells is BLNK (B-cell linker protein) and present evidences that the interaction of BLNK and the SH2 domain of Btk contributes to the complete tyrosine phosphorylation of PLCγ.


Sign in / Sign up

Export Citation Format

Share Document