Hemostatic Effects of Fibrinogen-γ Chain Dodecapeptide-Conjugated Polymerized Albumin Particles In Vitro and in Vivo.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3883-3883
Author(s):  
Yosuke Okamura ◽  
Naohide Watanabe ◽  
Shinji Takeoka ◽  
Hidenori Suzuki ◽  
Mitsuru Murata ◽  
...  

Abstract We have studied a prototype of platelet substitutes focusing on a dodecapeptide, HHLGGAKQAGDV (H12)1), which is specific for fibrinogen γ-chain carboxy-terminal sequence (γ 400–411). In this study, we conjugated H12 to the surface of polymerized albumin particles (polyAlb) as biocompatible and biodegradable carriers to produce particles having hemostatic ability, and evaluated their in vitro and in vivo effects. H12 (H12; 9.6 x 103 /particles) containing cysteine to the N-terminal was conjugated to polyAlb (260 ± 60 nm), and the effect of H12-polyAlb on platelet thrombus formation was evaluated in vitro with thrombocytopenic whole blood ([platelet] = 2.0 x 104 /μL, anticoagulated with PPACK) under flow conditions (shear rate; 150 s−1). Thrombocytopenic rats were made by busulphan injection at a dose of 20 mg/kg, and a 2.5 mm length x 1.0 mm depth template-guided incision (QuikheelTM, Becton-Dickinson, San Jose, CA) was made 1 cm from the tip of tail. The tail was immersed in a 50 mL cylinder of saline and the time taken to stop bleeding was measured. When thrombocytopenic blood in the presence of H12-polyAlb ([rHSA]=0.14 mg/mL) was flowed on collagen-plate, the surface coverage of DiOC6-labeled platelets evaluated by fluorescence microscopy was increased to 3.9 ± 1.1 % (n=3) from 2.1 ± 0.4 % (n=3) obtained in the absence of H12-polyAlb. In the same experiments, rhodamine-labeled H12-polyAlb was found to be involved in platelet-platelet interactions by binding to activated platelet surface, thus enhancing platelet thrombus formation. Next, in vivo hemostatic effect was tested by measuring tail bleeding time of thrombocytopenic rats 5 minutes after the intravenous administration of H12-polyAlb. The bleeding times of normal ([platelet] = 8.1 ±0.9 x 105 /μL) and thrombocytopenic rats ([platelet] = 2.0 ±0.3 x 105 /μL) were 187 ± 51 s and 609 ± 153 s (n=6), respectively. H12-polyAlb administration at a dose of 4 mg/kg significantly shortened the bleeding time to 342 ± 73 s (n=10), whereas polyAlb was without effects (553 ± 104 s, n=6). These results indicate that H12-polyAlb can be a suitable candidate for an alternative to human platelet concentrates infused into thrombocytopenic patients.

Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1582-1589
Author(s):  
Mei-Chi Chang ◽  
Hui-Kuan Lin ◽  
Hui-Chin Peng ◽  
Tur-Fu Huang

A potent platelet glycoprotein Ib (GPIb) antagonist, crotalin, with a molecular weight of 30 kD was purified from the snake venom ofCrotalus atrox. Crotalin specifically and dose dependently inhibited aggregation of human washed platelets induced by ristocetin with IC50 of 2.4 μg/mL (83 nmol/L). It was also active in inhibiting ristocetin-induced platelet aggregation of platelet-rich plasma (IC50, 6.3 μg/mL). 125I-crotalin bound to human platelets in a saturable and dose-dependent manner with a kd value of 3.2 ± 0.1 × 10−7 mol/L, and its binding site was estimated to be 58,632 ± 3,152 per platelet. Its binding was specifically inhibited by a monoclonal antibody, AP1 raised against platelet GPIb. Crotalin significantly prolonged the latent period in triggering platelet aggregation caused by low concentration of thrombin (0.03 U/mL), and inhibited thromboxane B2formation of platelets stimulated either by ristocetin plus von Willebrand factor (vWF), or by thrombin (0.03 U/mL). When crotalin was intravenously (IV) administered to mice at 100 to 300 μg/kg, a dose-dependent prolongation on tail bleeding time was observed. The duration of crotalin in prolonging tail bleeding time lasted for 4 hours as crotalin was given at 300 μg/kg. In addition, its in vivo antithrombotic activity was evidenced by prolonging the latent period in inducing platelet-rich thrombus formation by irradiating the mesenteric venules of the fluorescein sodium-treated mice. When administered IV at 100 to 300 μg/kg, crotalin dose dependently prolonged the time lapse in inducing platelet-rich thrombus formation. In conclusion, crotalin specifically inhibited vWF-induced platelet agglutination in the presence of ristocetin because crotalin selectively bound to platelet surface receptor-glycoprotein Ib, resulting in the blockade of the interaction of vWF with platelet membrane GPIb. In addition, crotalin is a potent antithrombotic agent because it pronouncedly blocked platelet plug formation in vivo.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1582-1589 ◽  
Author(s):  
Mei-Chi Chang ◽  
Hui-Kuan Lin ◽  
Hui-Chin Peng ◽  
Tur-Fu Huang

AbstractA potent platelet glycoprotein Ib (GPIb) antagonist, crotalin, with a molecular weight of 30 kD was purified from the snake venom ofCrotalus atrox. Crotalin specifically and dose dependently inhibited aggregation of human washed platelets induced by ristocetin with IC50 of 2.4 μg/mL (83 nmol/L). It was also active in inhibiting ristocetin-induced platelet aggregation of platelet-rich plasma (IC50, 6.3 μg/mL). 125I-crotalin bound to human platelets in a saturable and dose-dependent manner with a kd value of 3.2 ± 0.1 × 10−7 mol/L, and its binding site was estimated to be 58,632 ± 3,152 per platelet. Its binding was specifically inhibited by a monoclonal antibody, AP1 raised against platelet GPIb. Crotalin significantly prolonged the latent period in triggering platelet aggregation caused by low concentration of thrombin (0.03 U/mL), and inhibited thromboxane B2formation of platelets stimulated either by ristocetin plus von Willebrand factor (vWF), or by thrombin (0.03 U/mL). When crotalin was intravenously (IV) administered to mice at 100 to 300 μg/kg, a dose-dependent prolongation on tail bleeding time was observed. The duration of crotalin in prolonging tail bleeding time lasted for 4 hours as crotalin was given at 300 μg/kg. In addition, its in vivo antithrombotic activity was evidenced by prolonging the latent period in inducing platelet-rich thrombus formation by irradiating the mesenteric venules of the fluorescein sodium-treated mice. When administered IV at 100 to 300 μg/kg, crotalin dose dependently prolonged the time lapse in inducing platelet-rich thrombus formation. In conclusion, crotalin specifically inhibited vWF-induced platelet agglutination in the presence of ristocetin because crotalin selectively bound to platelet surface receptor-glycoprotein Ib, resulting in the blockade of the interaction of vWF with platelet membrane GPIb. In addition, crotalin is a potent antithrombotic agent because it pronouncedly blocked platelet plug formation in vivo.


2020 ◽  
Vol 4 (4) ◽  
pp. 638-643
Author(s):  
Manuel Salzmann ◽  
Sonja Bleichert ◽  
Bernhard Moser ◽  
Marion Mussbacher ◽  
Mildred Haase ◽  
...  

Abstract Platelets are small anucleate cells that release a plethora of molecules to ensure functional hemostasis. It has been reported that IκB kinase 2 (IKK2), the central enzyme of the inflammatory NF-κB pathway, is involved in platelet activation, because megakaryocyte/platelet-specific deletion of exons 6 and 7 of IKK2 resulted in platelet degranulation defects and prolonged bleeding. We aimed to investigate the role of IKK2 in platelet physiology in more detail, using a platelet-specific IKK2 knockout via excision of exon 3, which makes up the active site of the enzyme. We verified the deletion on genomic and transcriptional levels in megakaryocytes and were not able to detect any residual IKK2 protein; however, platelets from these mice did not show any functional impairment in vivo or in vitro. Bleeding time and thrombus formation were not affected in platelet-specific IKK2-knockout mice. Moreover, platelet aggregation, glycoprotein GPIIb/IIIa activation, and degranulation were unaltered. These observations were confirmed by pharmacological inhibition of IKK2 with TPCA-1 and BMS-345541, which did not affect activation of murine or human platelets over a wide concentration range. Altogether, our results imply that IKK2 is not essential for platelet function.


Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Yacine Boulaftali ◽  
Frédéric Adam ◽  
Laurence Venisse ◽  
Véronique Ollivier ◽  
Benjamin Richard ◽  
...  

AbstractProtease nexin–1 (PN-1) is a serpin that inhibits plasminogen activators, plasmin, and thrombin. PN-1 is barely detectable in plasma but is expressed by platelets. Here, we studied platelet PN-1 in resting and activated conditions and its function in thrombosis. Studies on human platelets from healthy donors and from patients with a Gray platelet syndrome demonstrate that PN-1 is present both at the platelet surface and in α-granules. The role of PN-1 was investigated in vitro using human platelets incubated with a blocking antibody and using platelets from PN-1–deficient mice. Both approaches indicate that platelet PN-1 is active on thrombin and urokinase-type plasminogen activator. Blockade and deficiency of platelet PN-1 result in accelerated and increased tissue factor-induced thrombin generation as indicated by calibrated automated thrombography. Moreover, platelets from PN-1–deficient mice respond to subthreshold doses of thrombin, as assessed by P-selectin expression and platelet aggregation. Thrombus formation, induced ex vivo by collagen in blood flow conditions and in vivo by FeCl3-induced injury, is significantly increased in PN-1–deficient mice, demonstrating the antithrombotic properties of platelet PN-1. Platelet PN-1 is thus a key player in the thrombotic process, whose negative regulatory role has been, up to now, markedly underestimated.


2021 ◽  
Author(s):  
Leila Revollo ◽  
Glenn Merrill-Skoloff ◽  
Karen De Ceunynck ◽  
James R. Dilks ◽  
Mattia Bordoli ◽  
...  

AbstractTyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate Lonesome Kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet ɑ-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology, but have dramatic changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets demonstrate a significant decrease of several tyrosine phosphobands. Functional testing of VLK-deficient platelets shows decreased PAR4- and collagen-mediated platelet aggregation, but normal responses to ADP. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased PAR4-mediated Akt (S473) and Erk1/2(T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets demonstrate strongly reduced platelet accumulation and fibrin formation following laser-injury of cremaster arterioles compared to controls. These studies demonstrate that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.


Blood ◽  
2021 ◽  
Author(s):  
Leila Denise Revollo ◽  
Glenn Merrill-Skoloff ◽  
Karen De Ceunynck ◽  
James R Dilks ◽  
Shihui Guo ◽  
...  

Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate Lonesome Kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet ɑ-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology, but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets demonstrate a significant decrease of several tyrosine phosphobands. Functional testing of VLK-deficient platelets shows decreased PAR4- and collagen-mediated platelet aggregation, but normal responses to ADP. Dense granule and a-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased PAR4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets demonstrate strongly reduced platelet accumulation and fibrin formation following laser-injury of cremaster arterioles compared to controls, but normal bleeding times. These studies demonstrate that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.


1995 ◽  
Vol 73 (02) ◽  
pp. 318-323 ◽  
Author(s):  
K Azzam ◽  
L I Garfinkel ◽  
C Bal dit Sollier ◽  
M Cisse Thiam ◽  
L Drouet

SummaryTo assess the antithrombotic effectiveness of blocking the platelet glycoprotein (GP) Ib/IX receptor for von Willebrand factor (vWF), the antiaggregating and antithrombotic effects were studied in guinea pigs using a recombinant fragment of vWF, Leu 504-Lys 728 with a single intrachain disulfide bond linking residues Cys 509-Cys 695. The inhibitory effect of this peptide, named VCL, was tested in vitro on ristocetin- and botrocetin-induced platelet aggregation and compared to the ADP-induced platelet aggregation. In vivo, the antithrombotic effect of VCL was tested in a model of laser-injured mesentery small arteries and correlated to the ex vivo ristocetin-induced platelet aggregation. In this model of laser-induced thrombus formation, five mesenteric arteries were studied in each animal, and the number of recurrent thrombi during 15 min, the time to visualization and time to formation of first thrombus were recorded.In vitro, VCL totally abolished ristocetin- and botrocetin-induced platelet aggregation, but had no effect on ADP-induced platelet aggregation. Ex vivo, VCL (0.5 to 2 mg/kg) administered as a bolus i. v. injection inhibits ristocetin-induced platelet aggregation with a duration of action exceeding 1 h. The maximum inhibition was observed 5 min after injection of VCL and was dose related. The same doses of VCL had no significant effect on platelet count and bleeding time. In vivo, VCL (0.5 to 2 mg/kg) had no effect on the appearance of the thrombi formed but produced dose-dependent inhibition of the mean number of recurrent thrombi (the maximal effect was obtained at 5 min following i. v. injection of the highest dose: 0.8 ± 0.2 thrombi versus 4 ± 0.4 thrombi in controls). The three doses of VCL increased the time in which the first thrombus in a concentration-dependent manner was formed. However, the time to visualize the first thrombus was only prolonged in the higher dose-treated group.These in-vivo studies confirm that VCL induces immediate, potent, and transient antithrombotic effects. Most importantly, this inhibition was achieved without inducing thrombocytopenia nor prolongation of the bleeding time.


2019 ◽  
Vol 3 (7) ◽  
pp. 1154-1166 ◽  
Author(s):  
Alyssa J. Moroi ◽  
Nicole M. Zwifelhofer ◽  
Matthew J. Riese ◽  
Debra K. Newman ◽  
Peter J. Newman

Abstract Diacylglycerol kinases (DGKs) are a family of enzymes that convert diacylglycerol (DAG) into phosphatidic acid (PA). The ζ isoform of DGK (DGKζ) has been reported to inhibit T-cell responsiveness by downregulating intracellular levels of DAG. However, its role in platelet function remains undefined. In this study, we show that DGKζ was expressed at significant levels in both platelets and megakaryocytes and that DGKζ-knockout (DGKζ-KO) mouse platelets were hyperreactive to glycoprotein VI (GPVI) agonists, as assessed by aggregation, spreading, granule secretion, and activation of relevant signal transduction molecules. In contrast, they were less responsive to thrombin. Platelets from DGKζ-KO mice accumulated faster on collagen-coated microfluidic surfaces under conditions of arterial shear and stopped blood flow faster after ferric chloride–induced carotid artery injury. Other measures of hemostasis, as measured by tail bleeding time and rotational thromboelastometry analysis, were normal. Interestingly, DGKζ deficiency led to increased GPVI expression on the platelet and megakaryocyte surfaces without affecting the expression of other platelet surface receptors. These results implicate DGKζ as a novel negative regulator of GPVI-mediated platelet activation that plays an important role in regulating thrombus formation in vivo.


Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 107-117 ◽  
Author(s):  
AS Kestin ◽  
CR Valeri ◽  
SF Khuri ◽  
J Loscalzo ◽  
PA Ellis ◽  
...  

The use of cardiopulmonary bypass (CPB) during cardiac surgery is associated with a hemostatic defect, the hallmark of which is a markedly prolonged bleeding time. However, the nature of the putative platelet function defect is controversial. In this study, blood was analyzed at 10 time points before, during, and after CPB. We used a whole-blood flow cytometric assay to study platelet surface glycoproteins in (1) peripheral blood, (2) peripheral blood activated in vitro by either phorbol myristate acetate, the thromboxane (TX)A2 analog U46619, or a combination of adenosine diphosphate and epinephrine, and (3) the blood emerging from a bleeding-time wound (shed blood). Activation-dependent changes were detected by monoclonal antibodies directed against the glycoprotein (GP)Ib-IX and GPIIb-IIIa complexes and P-selectin. In addition, we measured plasma glycocalicin (a proteolytic fragment of GPIb) and shed-blood TXB2 (a stable breakdown product of TXA2). In shed blood emerging from a bleeding-time wound, the usual time-dependent increase in platelet surface P-selectin was absent during CPB, but returned to normal within 2 hours. This abnormality paralleled both the CPB-induced prolongation of the bleeding time and a CPB-induced marked reduction in shed-blood TXB2 generation. In contrast, there was no loss of platelet reactivity to in vitro agonists during or after CPB. In peripheral blood, platelet surface P-selectin was negligible at every time point, demonstrating that CPB resulted in a minimal number of circulating degranulated platelets. CPB did not change the platelet surface expression of GPIb in peripheral blood, as determined by the platelet binding of a panel of monoclonal antibodies, ristocetin-induced binding of von Willebrand factor, and a lack of increase in plasma glycocalicin. CPB did not change the platelet surface expression of the GPIIb-IIIa complex in peripheral blood, as determined by the platelet binding of fibrinogen and a panel of monoclonal antibodies. In summary, CPB resulted in (1) markedly deficient platelet reactivity in response to an in vivo wound, (2) normal platelet reactivity in vitro, (3) no loss of the platelet surface GPIb-IX and GPIIb-IIIa complexes, and (4) a minimal number of circulating degranulated platelets. These data suggest that the “platelet function defect” of CPB is not a defect intrinsic to the platelet, but is an extrinsic defect such as an in vivo lack of availability of platelet agonists. The near universal use of heparin during CPB is likely to contribute substantially to this defect via its inhibition of thrombin, the preeminent platelet activator.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
O Borst ◽  
S Geue ◽  
M.C Manke ◽  
B Peng ◽  
P Muenzer ◽  
...  

Abstract Background Platelet activation after contact to subendothelial collagen following atherosclerotic plaque rupture can lead to arterial thrombosis with acute thrombotic vascular occlusion. Annexin A7 (AnxA7) is an intracellular Ca2+- and phospholipid-binding protein that participates in the regulation of prostaglandin production in inflammatory diseases, but also in cell survival and tumor growth. Objective In the present study, we aimed to determine the role of AnxA7 for platelet Ca2+ signaling and lipid metabolism in platelet activation and arterial thrombosis in gene-targeted mice lacking annexin A7 (Anxa7−/−). Results AnxA7 is strongly expressed in platelets of platelet-rich human coronary thrombi aspirated from patients with acute ST elevation myocardial infarction. Functionally, platelet aggregation and dense granule secretion were significantly abrogated in Anxa7−/− platelets as compared to wildtype platelets (Anxa7+/+) after activation with collagen or collagen-related peptide (CRP), a specific agonist of the major platelet collagen receptor glycoprotein VI (GPVI). Further, in vitro thrombus formation on a collagen-coated surface under high arterial shear rates was significantly diminished in Anxa7-deficient platelets, and thrombotic vascular occlusion after FeCl3-induced injury in vivo was blunted in Anxa7−/−bone marrow chimeric mice, but no prolongation of bleeding time was observed. Moreover, Anxa7−/− platelets showed a significant reduction of IP3 production due to an abolished phospholipase C (PLC) gamma2 phosphorylation resulting in an abolished increase of [Ca2+]i after platelet activation with CRP. Moreover, we could show by quantitative lipidomics analysis that annexin A7 critically affects platelet oxylipid metabolism following activation of GPVI-dependent platelet signalling since Anxa7−/− platelets showed a significant reduction of the bioactive metabolites thromboxane A2 and 12(S)-hydroxy-eicosatetraenoic acid (12(S)-HETE) levels as well as significantly reduced levels of several other prostaglandins following stimulation with collagen or CRP. Finally, defective PLCgamma2 phosphorylation, IP1 production and blunted increase of [Ca2+]i in Anxa7−/− platelets could be rescued by exogenous addition of 12(S)-HETE indicating that AnxA7 is a critical regulator of the platelet oxygenase 12-lipoxygenase (12-LOX) in GPVI-dependent platelet Ca2+ signalling during arterial thrombosis following activation by collagen. Conclusions The present study reveals annexin A7 as a critical regulator of oxylipid metabolism and Ca2+ signaling in GPVI-dependent platelet activation. Anxa7-deficiency further results in decreased in vitro and in vivo thrombus formation, but does not affect bleeding time. In conclusion, annexin A7 plays an important role in platelet signaling during arterial thrombosis and thus, may reflect a promising target for novel antiplatelet strategies. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)


Sign in / Sign up

Export Citation Format

Share Document