Intracellular Trafficking of Factor V Subsequent to Its Endocytosis by Megakaryocytes.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1031-1031
Author(s):  
Lorna W. Seifert ◽  
Alexa Wahle-Ritchie ◽  
Beth A. Bouchard ◽  
Paula B. Tracy

Abstract Recent studies by our laboratory have identified physical and functional differences between plasma- and platelet-derived factor V. Additional studies indicate that the platelet-derived molecule originates from megakaryocyte endocytosis of the plasma-derived cofactor via a receptor-mediated, clathrin-dependent mechanism, and is subsequently packaged and stored in platelet α-granules. We hypothesize that plasma-derived factor V is modified intracellularly following its endocytosis by megakarycytes to generate the unique platelet-derived cofactor molecule. Thus, the time-dependent, intracellular trafficking of fluorescently-labeled factor V by the megakaryocyte-like cell line, CMK, was determined by confocal microscopy using various organelle-specific, fluorescent markers. Previously, we had demonstrated that subsequent to its endocytosis factor V partially co-localizes with two other proteins known to be endocytosed by megakaryocytes, fibrinogen, an α -granule protein, and transferrin, an iron transport protein. In the current study, we demonstrated that subsequent to their endocytosis, factor V and transferrin partially co-localized to early endosomes as determined using an antibody directed against Rab5. Complete co-localization of anti-Rab5 with an antibody against early endosomal antigen-1 (EEA-1) confirmed the specificity of the anti-Rab5 antibody for early endosomes. Endocytosed factor V was also shown to partially co-localize with von Willebrand factor, an α -granule protein that is synthesized by megakaryocytes. Its synthesis by megakaryocytes was confirmed by partial co-localization of this antibody with anti-Golgi antibodies against GM130, a structural element of the Golgi apparatus, and p230 trans, a protein involved in vesicular transport from the trans-Golgi network. Factor V also partially co-localized with these Golgi markers, consistent with the hypothesis that factor V is modified intracellularly subsequent to its endocytosis. Co-localization studies were also performed using LysoSensor Blue, which partitions into acidic organelles with a pH ~5.1 exhibiting an increase in fluorescence intensity upon acidification. Neither factor V nor transferrin co-localized with LysoSensor Blue confirming that they are not trafficked to lysosomes subsequent to their endocytosis. In conclusion, these combined observations suggest that subsequent to its endocytosis by megakaryocytes factor V is trafficked through early endosomes and ultimately stored in the α -granule with vWF and fibrinogen. Further, these data suggest that prior to its packaging into α -granules factor V may undergo retrograde transport through and O-linked glycosylation in the trans-Golgi network, which is consistent with our previous observations that purified, platelet-derived factor V contains an N-acetyl glucosamine or galactosamine at Thr402 that is not observed in its plasma counterpart.

2007 ◽  
Vol 18 (12) ◽  
pp. 4979-4991 ◽  
Author(s):  
Zi Zhao Lieu ◽  
Merran C. Derby ◽  
Rohan D. Teasdale ◽  
Charles Hart ◽  
Priscilla Gunn ◽  
...  

Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane–TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.


2005 ◽  
Vol 29 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Tina Wahle ◽  
Kai Prager ◽  
Nikolai Raffler ◽  
Christian Haass ◽  
Michael Famulok ◽  
...  

2013 ◽  
Vol 24 (18) ◽  
pp. 2907-2917 ◽  
Author(s):  
Kohei Arasaki ◽  
Daichi Takagi ◽  
Akiko Furuno ◽  
Miwa Sohda ◽  
Yoshio Misumi ◽  
...  

Docking and fusion of transport vesicles/carriers with the target membrane involve a tethering factor–mediated initial contact followed by soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)–catalyzed membrane fusion. The multisubunit tethering CATCHR family complexes (Dsl1, COG, exocyst, and GARP complexes) share very low sequence homology among subunits despite likely evolving from a common ancestor and participate in fundamentally different membrane trafficking pathways. Yeast Tip20, as a subunit of the Dsl1 complex, has been implicated in retrograde transport from the Golgi apparatus to the endoplasmic reticulum. Our previous study showed that RINT-1, the mammalian counterpart of yeast Tip20, mediates the association of ZW10 (mammalian Dsl1) with endoplasmic reticulum–localized SNARE proteins. In the present study, we show that RINT-1 is also required for endosome-to–trans-Golgi network trafficking. RINT-1 uncomplexed with ZW10 interacts with the COG complex, another member of the CATCHR family complex, and regulates SNARE complex assembly at the trans-Golgi network. This additional role for RINT-1 may in part reflect adaptation to the demand for more diverse transport routes from endosomes to the trans-Golgi network in mammals compared with those in a unicellular organism, yeast. The present findings highlight a new role of RINT-1 in coordination with the COG complex.


2000 ◽  
Vol 151 (6) ◽  
pp. 1207-1220 ◽  
Author(s):  
Mona Wilcke ◽  
Ludger Johannes ◽  
Thierry Galli ◽  
Véronique Mayau ◽  
Bruno Goud ◽  
...  

Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20°C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 575 ◽  
Author(s):  
Petra Prokšová ◽  
Jan Lipov ◽  
Jaroslav Zelenka ◽  
Eric Hunter ◽  
Hana Langerová ◽  
...  

The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.


2014 ◽  
Vol 89 (5) ◽  
pp. 2777-2791 ◽  
Author(s):  
Jingjing Cao ◽  
Cui Lin ◽  
Huijuan Wang ◽  
Lun Wang ◽  
Niu Zhou ◽  
...  

ABSTRACTMicrotubule transport of circovirus from the periphery of the cell to the nucleus is essential for viral replication in early infection. How the microtubule is recruited to the viral cargo remains unclear. In this study, we observed that circovirus trafficking is dependent on microtubule polymerization and that incoming circovirus particles colocalize with cytoplasmic dynein and endosomes. However, circovirus binding to dynein was independent of the presence of microtubular α-tubulin and translocation of cytoplasmic dynein into the nucleus. The circovirus capsid (Cap) subunit enhanced microtubular acetylation and directly interacted with intermediate chain 1 (IC1) of dynein. N-terminal residues 42 to 100 of the Cap viral protein were required for efficient binding to the dynein IC1 subunit and for retrograde transport. Knockdown of IC1 decreased virus transport and replication. These results demonstrate that Cap is a direct ligand of the cytoplasmic dynein IC1 subunit and an inducer of microtubule α-tubulin acetylation. Furthermore, Cap recruits the host dynein/microtubule machinery to facilitate transport toward the nucleus by an endosomal mechanism distinct from that used for physiological dynein cargo.IMPORTANCEIncoming viral particles hijack the intracellular trafficking machinery of the host in order to migrate from the cell surface to the replication sites. Better knowledge of the interaction between viruses and virus proteins and the intracellular trafficking machinery may provide new targets for antiviral therapies. Currently, little is known about the molecular mechanisms of circovirus transport. Here, we report that circovirus particles enter early endosomes and utilize the microtubule-associated molecular motor dynein to travel along microtubules. The circovirus capsid subunit enhances microtubular acetylation, and N-terminal residues 42 to 100 directly interact with the dynein IC1 subunit during retrograde transport. These findings highlight a mechanism whereby circoviruses recruit dynein for transport to the nucleus via the dynein/microtubule machinery.


Sign in / Sign up

Export Citation Format

Share Document