Human Mesenchymal Stem Cells Injected Via Portal Vein Are Differentiated into Human Hepatocytes in Regenerating Rat Liver.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1694-1694
Author(s):  
Jong-Ho Won ◽  
Dong-Ho Choi ◽  
Jung-Hoon Kim ◽  
Sook-Ja Kim ◽  
Hee-Jeong Cheung ◽  
...  

Abstract Objectives: Human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Evidence has been accumulated to indicate that certain compartments of bone marrow cells are capable to differentiating into hepatocytes in vitro. In this study we attempted to examine the differentiation ability of human MSCs into hepatocytes in vitro and in vivo by injected them into rat portal vein in partially resected rat liver model. Materials and Methods: MSCs were isolated from human bone marrow and induced differentiation with our protocol containing hepatocyte growth factor in vitro. Four - to - 5 week-old female Sprague Dawley rats were used for xenotransplantation model. Culture expanded MSCs (5 X 106 cells/rat) were injected into the portal vein and 70% hepatectomy was performed on the subsequent day. All rats were immunosuppressed with a daily intraperitoneal injection of cyclosporine A. Results: The morphology of the MSCs was changed into hepatocyte-like cells after in vitro culture for 28days and expression of hepatocyte specific genes also confirmed with RT-PCR and immunohistochemical stain. Transplanted MSCs differentiated into hepatocytes and they surprisingly composed hepatic cords with expression of the human albumin and human hepatocyte specific genes at 21 days after infusion. Conclusion: We have demonstrated that human MSCs can differentiate into functional hepatocyte-like cells in vitro and in vivo. Therefore, human MSCs may become an alternative source to hepatocyte regeneration or liver cell transplantation.

2021 ◽  
pp. 1-11
Author(s):  
Yuzaburo Shimizu ◽  
Joy Gumin ◽  
Feng Gao ◽  
Anwar Hossain ◽  
Elizabeth J. Shpall ◽  
...  

OBJECTIVE Delta-24-RGD is an oncolytic adenovirus that is capable of replicating in and killing human glioma cells. Although intratumoral delivery of Delta-24-RGD can be effective, systemic delivery would improve its clinical application. Bone marrow–derived human mesenchymal stem cells (BM-hMSCs) obtained from healthy donors have been investigated as virus carriers. However, it is unclear whether BM-hMSCs can be derived from glioma patients previously treated with marrow-toxic chemotherapy or whether such BM-hMSCs can deliver oncolytic viruses effectively. Herein, the authors undertook a prospective clinical trial to determine the feasibility of obtaining BM-hMSCs from patients with recurrent malignant glioma who were previously exposed to marrow-toxic chemotherapy. METHODS The authors enrolled 5 consecutive patients who had been treated with radiation therapy and chemotherapy. BM aspirates were obtained from the iliac crest and were cultured to obtain BM-hMSCs. RESULTS The patient-derived BM-hMSCs (PD-BM-hMSCs) had a morphology similar to that of healthy donor–derived BM-hMSCs (HD-BM-hMSCs). Flow cytometry revealed that all 5 cell lines expressed canonical MSC surface markers. Importantly, these cultures could be made to differentiate into osteocytes, adipocytes, and chondrocytes. In all cases, the PD-BM-hMSCs homed to intracranial glioma xenografts in mice after intracarotid delivery as effectively as HD-BM-hMSCs. The PD-BM-hMSCs loaded with Delta-24-RGD (PD-BM-MSC-D24) effectively eradicated human gliomas in vitro. In in vivo studies, intravascular administration of PD-BM-MSC-D24 increased the survival of mice harboring U87MG gliomas. CONCLUSIONS The authors conclude that BM-hMSCs can be acquired from patients previously treated with marrow-toxic chemotherapy and that these PD-BM-hMSCs are effective carriers for oncolytic viruses.


2012 ◽  
Vol 83 (5) ◽  
pp. 249-259 ◽  
Author(s):  
Bong-Wook Park ◽  
Eun-Ju Kang ◽  
June-Ho Byun ◽  
Myeong-Gyun Son ◽  
Hyun-Joon Kim ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5253-5253
Author(s):  
William H. Peranteau ◽  
Andrea T. Badillo ◽  
Keith Alcorn ◽  
Stephanie Filice ◽  
Alan W. Flake

Abstract Mesenchymal stem cells (MSCs) are multipotent cells of potential clinical interest given their capacity for in vitro expansion and intriguing immunologic properties. Studies using human and murine MSCs demonstrated their ability to suppress stimulated T cells in vitro. Consequently, much interest has been generated in the ability of MSCs to prevent graft versus host disease (GVHD). In fact, a limited number of case reports suggest a therapeutic role of human MSCs in the treatment of GVHD. Although encouraging, no systematic study has been performed to assess the ability of MSCs to suppress GVHD in vivo. In the current study we utilize a purified population of adult bone marrow derived murine MSCs previously shown to be immunosuppressive in vitro to evaluate the therapeutic potential in vivo of MSCs in an established model of murine GVHD. Methods: 8–12 week old C57Bl/6xBalb/c F1 mice were given 750cGy irradiation in a Cs135 gamma irradiator. 16–20 hours after irradiation, the mice received one of four groups of donor cells via lateral tail vein injection: 1) 10e6 C57Bl/6 (B6) bone marrow cells (BM) (n=5), 2) 10e6 B6 BM cells + 30e6 B6 spleen cells (n=12) (GVHD inoculum), 3) 10e6 B6 BM cells + 30e6 B6 spleen cells + 1e6 B6 MSCs (n=4) or 4) 10e6 B6 BM cells + 30e6 B6 spleen cells + 1.5e5 B6 MSCs (n=7). Mice were weighed and assessed for physical signs of GVHD such as ruffled fur, desquamation, diarrhea and hunching prior to receiving irradiation and on a weekly basis following irradiation and injection of the cellular inoculum. Results: In accordance with previous studies, the injection of 30e6 parental (B6) spleen cells combined with 10e6 (B6) parental BM cells into an F1 (B6xBalb/c) recipient following 750cGy irradiation resulted in a reliable model of GVHD. All mice receiving this inoculum demonstrated physical signs of GVHD including hunching and ruffled fur by three weeks post injection with the progression to desquamation and diarrhea by 5 weeks post injection. Similar to mice receiving the GVHD inoculum, mice receiving 30e6 B6 spleen cells + 10e6 B6 BM cells + either 1e6 B6 MSCs or 1.5e5 B6 MSCs demonstrated physical signs of GVHD by 3 weeks post injection. Control mice receiving only 10e6 B6 BM cells after 750cGy irradiation remained healthy and did not demonstrate any signs of GVHD. As demonstrated in figure 1, coinjection of either 1e6 B6 MSCs or 1.5e5 B6 MSCs with 30e6 B6 spleen cells + 10e6 B6 BM cells did not result in any significant change in weight loss compared to those mice receiving the GVHD inoculum. Similarly, the survival of mice receiving the GVHD inoculum was not improved by the coinjection of either 1e6 B6 MSCs or 1.5e5 B6 MSCs (25% vs 0% vs 28.57% at 6 weeks post injection). Conclusion: Previous studies have supported an in vitro immunosuppressive function of MSCs and a limited number of human studies have highlighted the potential ability of human MSCs to suppress GVHD. Despite these previous findings the current study demonstrates that the intravenous injection of MHC matched murine MSCs at the time of GVHD induction in an established murine model of GVHD does not affect the onset or severity of GVHD as measured by physical exam, weight loss and survival. Figure Figure


2016 ◽  
Vol 4 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Igor Matic ◽  
Maja Antunovic ◽  
Sime Brkic ◽  
Pavle Josipovic ◽  
Katarina Caput Mihalic ◽  
...  

AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs).METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers – alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry.RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein.CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2019 ◽  
Vol 7 (1) ◽  
pp. 362-372 ◽  
Author(s):  
Shuhao Liu ◽  
Yang Liu ◽  
Libo Jiang ◽  
Zheng Li ◽  
Soomin Lee ◽  
...  

BMP-2-induced migration of BMSCs can be inhibited by silencing CDC42 in vitro and in vivo.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


2017 ◽  
Vol 357 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Long-Wei Hu ◽  
Xiao Wang ◽  
Xin-Qun Jiang ◽  
Li-Qun Xu ◽  
Hong-Ya Pan

Sign in / Sign up

Export Citation Format

Share Document