Development of a Nonhuman Primate Model for Analysis of the Adoptive Transfer of Antigen-Specific T Cell Clones.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 770-770
Author(s):  
Carolina Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract In principle, the adoptive transfer of T cell clones specific for antigens expressed by pathogens or malignant cells could be therapeutically effective and allow precise control of the specificity, function, and magnitude of T cell immunity. However, the infusion of large numbers of cultured T cells or T cell clones in clinical trials has frequently failed to eradicate tumors or provide long-term control of infection. This may be due in part to the acquisition of an effector phenotype by the T cells during in vitro culture, which reduces their ability to survive in vivo and establish an immune response of sufficient magnitude for sustained efficacy. Several approaches including the administration of cytokines such as IL15, or lymphodepletion prior to cell transfer might promote the establishment of T cell memory after T cell transfer. To facilitate the rational development of clinical trials of T cell therapy, we have employed a nonhuman primate model of adoptive T cell transfer in which culture conditions and cell doses identical to those in human studies are utilized, and designed strategies to permit rigorous analysis of the persistence, function, phenotype, and migration of transferred cells. CD8+ CTL specific for macaque CMV were detected using an overlapping peptide panel and cytokine flow cytometry, isolated as individual T cell clones by limiting dilution, and propagated to large numbers in vitro. The T cell clones were transduced to express an intracellular truncated CD19 (ΔCD19) surface marker to allow tracking and functional assessment of T cells in vivo, and enriched by immunomagnetic selection to high purity (>98%) prior to transfer. The persistence of transferred ΔCD19+ T cells in the blood and their migration to the bone marrow and lymph nodes was determined by flow cytometry after staining with anti CD19, CD8, and CD3 antibodies. The infusion of ΔCD19+CD8+ CTL (3 x 108/kg) was safe and the cells remained detectable in vivo for >5 months. ΔCD19+CD8+ T cells were easily detected in the blood 1 day after transfer at a level of 2.7% of CD8+ T cells and gradually declined over 56 days to a stable population of 0.15–0.2% of CD8+ T cells. At the time of transfer the ΔCD19+CD8+ T cells had an effector phenotype (CD62L− CD127−), but gradually converted to a CD62L+CD127+ memory phenotype in vivo. The infused T cells were found at high levels in lymph node and bone marrow at day 14 after transfer (1.4% and 2.5%, respectively) and the cells at these sites were predominantly CD62L+. The ΔCD19+CD62L+ T cells lacked direct lytic function and expressed low levels of granzyme B, consistent with memory T cells. Sorting of these cells from post-transfer PBMC showed that in vitro activation restored lytic activity. The transferred ΔCD19+CD62L+ T cells in post-infusion PBMC produced IFNγ and TNFα comparable to endogenous CMV-specific CD8+ CTL. These results demonstrate that a subset (5–10%) of transferred CD8+ CTL clones can persist long-term as functional memory T cells. The macaque CD8+ T cell clones are responsive to IL15 in vitro and a safe regimen for administering IL15 to macaques that boosts endogenous T cells has been identified. Studies are now in progress to determine if IL15 can enhance the efficiency with which effector and memory CD8+ T cell responses can be augmented after adoptive transfer of T cell clones.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 866-866
Author(s):  
Carolina Berger ◽  
Michael C. Jensen ◽  
Stanley R. Riddell

Abstract Adoptive transfer of T cells has been employed to reconstitute T cell immunity to viruses such as cytomegalovirus (CMV) in immunodeficient allogeneic stem cell transplant (SCT) patients and is being investigated to treat malignancies. In the allogeneic SCT setting, the T cells are derived from the donor and need to be isolated as clones or highly pure populations to avoid graft-versus-host disease. CD8+ T cells can be divided into defined subsets including CD62L− effector memory (TEM) and central memory T cells (TCM) expressing the CD62L lymph node homing molecule. Both TCM and TEM can give rise to cytolytic effector T cells (TE) after antigen stimulation and can be expanded in vitro for immunotherapy. However, the potential of T cells derived from either the TEM or TCM subset to persist in vivo has not been investigated. We used a macaque model to determine whether reconstitution of T cell memory to CMV by adoptive transfer of CD8+ T cell clones depended on their origin from either the CD62L+ TCM or CD62L− TEM subset. T cell clones were retrovirally transduced to express the macaque CD19 or CD20 surface marker to allow tracking of T cells in vivo. Clones derived from both TCM and TEM had similar avidity and proliferative capacity in vitro, and had a TE phenotype (CD62L−CCR7−CD28−CD127−, granzyme B+). TCM and TEM-derived T cell clones were transferred to macaques at doses of 3–6×108/kg and were both detected in the blood one day after transfer at 1.2–2.7% (low dose) to 20–25% (high dose) of CD8+ T cells. However, the frequency of TEM-derived T cells was undetectable after 3–5 days, and the cells were not present in lymph node or bone marrow obtained at day 14. By contrast, TCM-derived clones persisted in peripheral blood, migrated to tissue sites, and were detectable long-term at significant levels. A distinguishing feature of TCM-derived cells was their responsiveness to homeostatic cytokines. Only TCM-derived clones were rescued from apoptotic cell death by low-dose IL15 for >30 days in vitro and this correlated with higher levels of IL15Rα, IL2Rβ, and IL2Rγ, and of Bcl-xL and Bcl-2, which promote cell survival. To determine if the inability of TEM-derived clones to survive in vitro correlated with an increased susceptibility of cell death in vivo, we measured the proportion of infused cells that were positive for propidium iodide (PI) and Annexin V during the short period of in vivo persistence. One day after transfer, 41–45% of TEM-derived T cells were Annexin V+/PI+, analyzed directly in the blood or after 24 hours of culture. By contrast, only a minor fraction of an adoptively transferred TCM-derived T cell clone was Annexin V+/PI+ and the infused cells survived in vivo. A subset of the persisting T cells reacquired TCM marker (CD62L+CCR7+CD127+CD28+) in vivo and regained functional properties of TCM (direct lytic activity; rapid proliferation to antigen). These T cells produced IFN-γ and TNF-α after peptide stimulation, and studies are in progress to assess their in vivo response to antigen by delivery of T cells expressing CMV proteins. Our studies in a large animal model show for the first time that CD8+ TE derived from TCM but not TEM can persist long-term, occupy memory T cell niches, and restore TCM subsets of CMV-specific immunity. Thus, taking advantage of the genetic programming of cells that have become TCM might yield T cells with greater therapeutic activity and could be targeted for human studies of T cell therapy for both viral and malignant disease.


2020 ◽  
Vol 8 (1) ◽  
pp. e000311 ◽  
Author(s):  
Lucine Marotte ◽  
Sylvain Simon ◽  
Virginie Vignard ◽  
Emilie Dupre ◽  
Malika Gantier ◽  
...  

BackgroundGenome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far,PDCD1editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments.MethodsHere we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to editPDCD1gene in human effector memory CD8+T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validatedPDCD1editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain’s sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR.ResultsHere we demonstrated the feasibility to editPDCD1gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent onPDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model.ConclusionThe use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 80-80
Author(s):  
Tobias F. Feuchtinger ◽  
Susanne Matthes-Martin ◽  
Celine Richard ◽  
Thomas Lion ◽  
Klaus Hamprecht ◽  
...  

Abstract Allogeneic stem cell transplantation (SCT) has become an increasing treatment option for a variety of malignant and non-malignant disease. During immune reconstitution the host is at significant risk for viral infections. Human adenovirus (HAdV) infection is especially in children an important and serious complication. Virus-specific T-cells are essential for the clearance of HAdV, since antiviral chemotherapy has been insufficient to date. We present a new treatment option using virus-specific donor T-cells for adoptive transfer of immunity to patients with systemic HAdV-infection. We isolated in 6 patients with systemic HAdV-infection after SCT virus-specific T-cells of the donor, according to INF-γ secretion after short in vitro stimulation with viral antigen, resulting in a combination of CD4+ and CD8+ T-cells. Between 5-50x103/kg T-cells were infused for adoptive transfer. For follow-up, the infection and the in-vivo expansion of infused T-cells were evaluated. Isolated cells showed high specificity and markedly reduced but residual alloreactivity in-vitro. In three of four evaluable patients the infused T-cells underwent an in-vivo expansion and in these three patients the viral load decreased in peripheral blood after adoptive T-cell transfer. In-vivo expansion of specific T-cells was dose-independent. T-cell infusion was well tolerated. One patient experienced GvHD°II of the skin after T-cell transfer. In conclusion specific T-cell immunotherapy as a new treatment approach for children was performed in 6 cases of systemic HAdV-infection after allogeneic SCT. Induction of a specific T-cell response through adoptive transfer has been shown feasible and effective to protect from HAdV-related complications.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 782-782 ◽  
Author(s):  
Marcus Butler ◽  
Philip Friedlander ◽  
Mary Mooney ◽  
Linda Drury ◽  
Martha Metzler ◽  
...  

Abstract Abstract 782 The goal of cellular immunotherapy is to build long-lasting anti-tumor immunologic “memory” in patients and reject tumors for a lifetime. Previously, we and others demonstrated that IL-15 promotes the generation of T cells with a central memory (CM) phenotype which have the capacity to persist and establish effective anti-tumor memory in vivo. Furthermore, it has been shown that CD83 delivers a CD80-dependent T cell stimulatory signal that allows T cells to be long-lived. Based on these findings, we developed a system to generate large numbers of long-lived antigen-specific CD8+ T cells with a memory phenotype. This in vitro culture system utilizes IL-15 and a standardized, renewable artificial antigen presenting cell (aAPC) which was produced by transducing CD80, CD83, and HLA-A*0201 to the human cell line, K562. This aAPC can uniquely support the priming and prolonged expansion of large numbers of antigen-specific CD8+ CTL which display a central/effector memory (CM/EM) phenotype, possess potent effector function, and can be maintained in vitro for >1 year without any feeder cells or cloning. We hypothesized that adoptive transfer of these CTL with a CM/EM phenotype should result in anti-tumor memory in humans even without lymphodepletion or high dose IL-2. For our “first-in-human” clinical study, we chose the melanoma antigen MART1 as a target antigen, since MART1-specific HLA-A*0201+-restricted precursor CTL are detectable in some melanoma patients and can be immunophenotyped pre-infusion. Autologous CD8+ T cells were stimulated weekly with peptide-pulsed human cell-based aAPC and expanded with low dose IL-2 and IL-15. After three weeks, polyclonal MART1 CTL were reinfused without additional lymphodepletion, chemotherapy, IL-2, or vaccination. Eight study participants have enrolled and received a total of 15 MART1 CTL infusions (31% MART1 multimer positivity, median). All but one subject received two reinfusions where the 2nd graft was produced from CD8+ T cells harvested two weeks after the 1st reinfusion. To date, ≥2×109 CTL with potent effector function and a CM/EM phenotype were successfully generated for all subjects. No dose limiting toxicities were observed at either Dose Level 1 (2×108/m2) or Dose Level 2 (2×109/m2). Clinical activity was observed with a response by RECIST criteria in 1 subject, which was confirmed by a negative PET/CT 100 days following the last CTL infusion. In addition, 1 patient experienced a mixed response, 1 had stable disease, 3 had progression, and 2 are currently on active therapy. Multimer staining showed that, immediately post infusion, the percentage of CD8+ T cells specific for MART1 temporarily increased in all subjects, with the highest (6.5%) observed in subject #7. In 4 subjects, sustained increases in the frequency of MART1 specific T cells by more than two-fold (range 2.0-10x) for ≥21 days were observed despite the fact that no exogenous cytokines or vaccination was administered. Moreover, an increase of detectable MART1 specific T cells which display a CM phenotype was observed in all evaluable subjects and was observed for ≥35 days in 6 of 8 subjects. In subject #2, the conversion of MART1 CTL immunophenotype from a naïve to a mixture of naïve/memory phenotypes was observed for more than 6 months. We identified 10 individual MART1 T cell clonotypes from peripheral CD45RA- memory T cells on day 21. Clonotypic TCR Vbeta CDR3 analysis revealed that CTL grafts contained 7 out of 10 of these clonotypes. Furthermore, 6 clonotypes persisted in the peripheral CD45RA- memory fraction on days 39, 67 and/or 132. In Subject #3, who showed a mixed clinical response, 5 individual MART1 T cell clonotypes were isolated from lung metastases. 4 out of 5 clones were included in the CTL grafts. This finding supports the possibility that infused CTL can traffic and localize to sites of disease. Intriguingly, in both subjects, we were able to identify MART1 CTL clonotypes that were not detectable in the CTL grafts but possibly emerged after CTL infusion, indicating that adoptive transfer of MART1-specific CTL may provoke a de novo antitumor response. Taken together, these results suggest that CM/EM MART1 CTL generated ex vivo using our cell-based artificial APC in the presence of IL-15 may persist in vivo and induce de novo anti-tumor responses. Further enhancement of anti-tumor activity may be achieved through vaccination, cytokine administration, and/or removal of cytokine sinks and inhibitory factors following appropriate lymphodepletion. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 186 (6) ◽  
pp. 899-908 ◽  
Author(s):  
Silvia Corinti ◽  
Raffaele De Palma ◽  
Angelo Fontana ◽  
Maria Cristina Gagliardi ◽  
Carlo Pini ◽  
...  

We have isolated CD8+ α/β T cells from the blood of atopic and healthy individuals which recognize a nonpeptide antigen present in an allergenic extract from Parietaria judaica pollen. This antigen appears to be a carbohydrate because it is resistant to proteinase K and alkaline digestion, is hydrophilic, and is sensitive to trifluoromethane-sulphonic and periodic acids. In addition, on a reverse-phase high performance liquid chromatography column the antigen recognized by CD8+ T cells separates in a fraction which contains >80% hexoses (glucose and galactose) and undetectable amounts of proteins. Presentation of this putative carbohydrate antigen (PjCHOAg) to CD8+ T cell clones is dependent on live antigen presenting cells (APCs) pulsed for >1 h at 37°C, suggesting that the antigen has to be internalized and possibly processed. Indeed, fixed APCs or APCs pulsed at 15°C were both unable to induce T cell response. Remarkably, PjCHOAg presentation is independent of the expression of classical major histocompatibility complex (MHC) molecules or CD1. CD8+ T cells stimulated by PjCHOAg-pulsed APCs undergo a sustained [Ca2+]i increase and downregulate their T cell antigen receptors (TCRs) in an antigen dose– and time-dependent fashion, similar to T cells stimulated by conventional ligands. Analysis of TCR Vβ transcripts shows that six independent PjCHOAg-specific T cell clones carry the Vβ8 segment with a conserved motif in the CDR3 region, indicating a structural requirement for recognition of this antigen. Finally, after activation, the CD8+ clones from the atopic patient express CD40L and produce high levels of interleukins 4 and 5, suggesting that the clones may have undergone a Th2-like polarization in vivo. These results reveal a new class of antigens which triggers T cells in an MHC-independent way, and these antigens appear to be carbohydrates. We suggest that this type of antigen may play a role in the immune response in vivo.


2003 ◽  
Vol 77 (22) ◽  
pp. 12088-12104 ◽  
Author(s):  
Sarah Nikiforow ◽  
Kim Bottomly ◽  
George Miller ◽  
Christian Münz

ABSTRACT In the absence of immune surveillance, Epstein-Barr virus (EBV)-infected B cells generate neoplasms in vivo and transformed cell lines in vitro. In an in vitro system which modeled the first steps of in vivo immune control over posttransplant lymphoproliferative disease and lymphomas, our investigators previously demonstrated that memory CD4+ T cells reactive to EBV were necessary and sufficient to prevent proliferation of B cells newly infected by EBV (S. Nikiforow et al., J. Virol. 75:3740-3752, 2001). Here, we show that three CD4+-T-cell clones reactive to the latent EBV antigen EBNA1 also prevent the proliferation of newly infected B cells from major histocompatibility complex (MHC) class II-matched donors, a crucial first step in the transformation process. EBNA1-reactive T-cell clones recognized B cells as early as 4 days after EBV infection through an HLA-DR-restricted interaction. They secreted Th1-type and Th2-type cytokines and lysed EBV-transformed established lymphoblastoid cell lines via a Fas/Fas ligand-dependent mechanism. Once specifically activated, they also caused bystander regression and bystander killing of non-MHC-matched EBV-infected B cells. Since EBNA1 is recognized by CD4+ T cells from nearly all EBV-seropositive individuals and evades detection by CD8+ T cells, EBNA1-reactive CD4+ T cells may control de novo expansion of B cells following EBV infection in vivo. Thus, EBNA1-reactive CD4+-T-cell clones may find use as adoptive immunotherapy against EBV-related lymphoproliferative disease and many other EBV-associated tumors.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 679-679
Author(s):  
Carolina Berger ◽  
Michael Berger ◽  
Michael C Jensen ◽  
Stanley R Riddell

Abstract The adoptive transfer of antigen-specific CD8+ cytotoxic T lymphocytes (CTL) that have been expanded in vitro is a promising treatment for human malignancies and infections. Interleukin (IL)-2 is frequently administered to support the in vivo survival of transferred T cells, but causes systemic toxicity when given in high doses and promotes the expansion of CD4+ regulatory T cells, which can inhibit antitumor immunity. IL-15, like IL-2, belongs to the four α-helix bundle family of cytokines and shares functional activities with IL-2, including binding to the IL-2 receptor (R) β and γc signaling components and promoting the proliferation of activated T cells in vitro. Despite the similar structure and in vitro function of IL-2 and IL-15, mice deficient in IL-15 or IL-15Rα have a marked reduction in natural killer (NK) cells, NKT cells, and CD8+ memory cells, whereas mice deficient in IL-2 or IL-2Rα have lymphoid hyperplasia and autoimmunity. Because of its critical role in the maintenance of T cell memory, IL-15 is an attractive alternative to IL-2 for augmenting adoptively transferred T cell immunity in humans. We administered IL-15 subcutaneously to nonhuman primates and evaluated toxicity, immunological effects, and peak and trough plasma levels. After establishing a safe regimen of IL-15 dosing, we evaluated the ability of IL-15 to support the survival of adoptively transferred CD8+ effector T cell (TE) clones in vivo. Results: IL-15 was administered subcutaneously to five macaques at doses ranging from 2.5 – 15 μg/kg, given either daily or every 3 days, respectively. The animals were monitored for clinical toxicity and plasma levels. Peripheral blood T cell subsets were enumerated at intervals and evaluated for phenotype and expression of Ki-67, a nuclear antigen expressed by cells undergoing proliferation. Daily administration of high-dose IL-15 resulted in a pronounced increase in the absolute numbers and Ki-67-expression of CD8+ T cells and NK cells, respectively, and preferentially expanded CD8+CD95+CCR7− effector memory (TEM) and CD8+CD95+CCR7+ central memory T cells (TCM). However, daily IL-15 in doses of 5 – 15 μg/kg was associated with accumulation of IL-15 in serum, and caused toxicities that were reversible when IL-15 was discontinued. By contrast, intermittent IL-15 treatment every 3 days was safe and induced only a moderate increase in NK cells, CD8+ TEM and TCM, and enhanced expression of Ki-67 in these cell subsets. This coincided with an increase of the absolute number of cytomegalovirus (CMV)-specific CD8+ T cells in the peripheral blood, but total numbers of CD4+ FoxP3+ T cells were not increased with IL-15. We then examined the ability of IL-15 administered every 3 – 4 days for 3 weeks to support the in vivo persistence of TCM-derived CMV-specific CD8+ TE clones that were marked to express a truncated macaque CD19 surface molecule and transferred to the animals without prior lymphodepletion. As previously reported, CD8+ TE clones derived from TCM precursors survive in vitro in low-doses of IL-15 in the absence of T cell receptor stimulation, persist long term in vivo after transfer and revert to the memory pool (Berger et al, JCI2008, 118:294). In comparison with animals that received CD8+ T cells alone in which transferred T cells persisted at a stable level of 0.2 – 0.8% of circulating CD8+ cells, the administration of IL-15 after T cell transfer resulted in the establishment of a high-level T cell response (10 – 15% of CD8+ T cells; >100 cells/μL) that persisted for >6 months after IL-15 was discontinued. The CD19+CD8+ TE clones re-acquired a memory T cell phenotype in vivo and expressed bcl-2, bcl-xL and Ki-67 comparable to endogenous CD8+ T cells. The transferred cells were present in large numbers in bone marrow and lymph node samples obtained on day 14 and day 56 after infusion suggesting that they efficiently occupied niches of T cell memory. This data in a large animal model predictive of clinical translation demonstrates that IL-15 can be safely administered, exerts a profound immunologic effect, and dramatically augments the long-term survival of ex vivo expanded antigen-specific CD8+ CTL clones after adoptive transfer without promoting in vivo expansion of CD4+ Foxp3+ regulatory cells. Thus, IL-15 may be a safer and more effective alternative to IL-2 and/or lymphodepletion to support the in vivo persistence of adoptively transferred tumor or virus-specific T cells in human immunotherapy.


2002 ◽  
Vol 197 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melanie S. Vacchio ◽  
Richard J. Hodes

Whereas ligation of CD28 is known to provide a critical costimulatory signal for activation of CD4 T cells, the requirement for CD28 as a costimulatory signal during activation of CD8 cells is less well defined. Even less is known about the involvement of CD28 signals during peripheral tolerance induction in CD8 T cells. In this study, comparison of T cell responses from CD28-deficient and CD28 wild-type H-Y–specific T cell receptor transgenic mice reveals that CD8 cells can proliferate, secrete cytokines, and generate cytotoxic T lymphocytes efficiently in the absence of CD28 costimulation in vitro. Surprisingly, using pregnancy as a model to study the H-Y–specific response of maternal T cells in the presence or absence of CD28 costimulation in vivo, it was found that peripheral tolerance does not occur in CD28KO pregnants in contrast to the partial clonal deletion and hyporesponsiveness of remaining T cells observed in CD28WT pregnants. These data demonstrate for the first time that CD28 is critical for tolerance induction of CD8 T cells, contrasting markedly with CD28 independence of in vitro activation, and suggest that the role of CD28/B7 interactions in peripheral tolerance of CD8 T cells may differ significantly from that of CD4 T cells.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


Sign in / Sign up

Export Citation Format

Share Document