scholarly journals Cytolytic CD4+-T-Cell Clones Reactive to EBNA1 Inhibit Epstein-Barr Virus-Induced B-Cell Proliferation

2003 ◽  
Vol 77 (22) ◽  
pp. 12088-12104 ◽  
Author(s):  
Sarah Nikiforow ◽  
Kim Bottomly ◽  
George Miller ◽  
Christian Münz

ABSTRACT In the absence of immune surveillance, Epstein-Barr virus (EBV)-infected B cells generate neoplasms in vivo and transformed cell lines in vitro. In an in vitro system which modeled the first steps of in vivo immune control over posttransplant lymphoproliferative disease and lymphomas, our investigators previously demonstrated that memory CD4+ T cells reactive to EBV were necessary and sufficient to prevent proliferation of B cells newly infected by EBV (S. Nikiforow et al., J. Virol. 75:3740-3752, 2001). Here, we show that three CD4+-T-cell clones reactive to the latent EBV antigen EBNA1 also prevent the proliferation of newly infected B cells from major histocompatibility complex (MHC) class II-matched donors, a crucial first step in the transformation process. EBNA1-reactive T-cell clones recognized B cells as early as 4 days after EBV infection through an HLA-DR-restricted interaction. They secreted Th1-type and Th2-type cytokines and lysed EBV-transformed established lymphoblastoid cell lines via a Fas/Fas ligand-dependent mechanism. Once specifically activated, they also caused bystander regression and bystander killing of non-MHC-matched EBV-infected B cells. Since EBNA1 is recognized by CD4+ T cells from nearly all EBV-seropositive individuals and evades detection by CD8+ T cells, EBNA1-reactive CD4+ T cells may control de novo expansion of B cells following EBV infection in vivo. Thus, EBNA1-reactive CD4+-T-cell clones may find use as adoptive immunotherapy against EBV-related lymphoproliferative disease and many other EBV-associated tumors.

Blood ◽  
2009 ◽  
Vol 114 (4) ◽  
pp. 807-815 ◽  
Author(s):  
Heather M. Long ◽  
Jianmin Zuo ◽  
Alison M. Leese ◽  
Nancy H. Gudgeon ◽  
Hui Jia ◽  
...  

Abstract Epstein-Barr virus (EBV)–specific T-cell preparations, generated by stimulating immune donor lymphocytes with the autologous virus-transformed B-lymphoblastoid cell line (LCL) in vitro, can be used to target EBV-positive malignancies. Although these preparations are enriched for EBV antigen–specific CD8+ T cells, most also contain a CD4+ T-cell population whose specificity is unknown. Here, we show that, although CD4+ T-cell clones derived from such cultures recognize HLA class II–matched LCLs but not mitogen-activated B lymphoblasts, many (1) do not map to any known EBV antigen, (2) can be raised from EBV-naive as well as EBV-immune persons, and (3) can recognize a broad range of human B lymphoma–derived cell lines irrespective of EBV genome status, providing those lines to express the relevant HLA class II–restricting allele. Importantly, such CD4+ clones not only produce IFNγ but are also cytotoxic and can control the outgrowth of HLA-matched lymphoma cells in cocultivation assays. We infer that such CD4+ T cells recognize cellular antigens that are preferentially up-regulated in EBV-transformed but not mitogen-activated B lymphoblasts and that are also expressed in a range of B-cell malignancies. Such antigens are therefore of potential value as targets for CD4+ T cell–based immunotherapy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 770-770
Author(s):  
Carolina Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract In principle, the adoptive transfer of T cell clones specific for antigens expressed by pathogens or malignant cells could be therapeutically effective and allow precise control of the specificity, function, and magnitude of T cell immunity. However, the infusion of large numbers of cultured T cells or T cell clones in clinical trials has frequently failed to eradicate tumors or provide long-term control of infection. This may be due in part to the acquisition of an effector phenotype by the T cells during in vitro culture, which reduces their ability to survive in vivo and establish an immune response of sufficient magnitude for sustained efficacy. Several approaches including the administration of cytokines such as IL15, or lymphodepletion prior to cell transfer might promote the establishment of T cell memory after T cell transfer. To facilitate the rational development of clinical trials of T cell therapy, we have employed a nonhuman primate model of adoptive T cell transfer in which culture conditions and cell doses identical to those in human studies are utilized, and designed strategies to permit rigorous analysis of the persistence, function, phenotype, and migration of transferred cells. CD8+ CTL specific for macaque CMV were detected using an overlapping peptide panel and cytokine flow cytometry, isolated as individual T cell clones by limiting dilution, and propagated to large numbers in vitro. The T cell clones were transduced to express an intracellular truncated CD19 (ΔCD19) surface marker to allow tracking and functional assessment of T cells in vivo, and enriched by immunomagnetic selection to high purity (>98%) prior to transfer. The persistence of transferred ΔCD19+ T cells in the blood and their migration to the bone marrow and lymph nodes was determined by flow cytometry after staining with anti CD19, CD8, and CD3 antibodies. The infusion of ΔCD19+CD8+ CTL (3 x 108/kg) was safe and the cells remained detectable in vivo for >5 months. ΔCD19+CD8+ T cells were easily detected in the blood 1 day after transfer at a level of 2.7% of CD8+ T cells and gradually declined over 56 days to a stable population of 0.15–0.2% of CD8+ T cells. At the time of transfer the ΔCD19+CD8+ T cells had an effector phenotype (CD62L− CD127−), but gradually converted to a CD62L+CD127+ memory phenotype in vivo. The infused T cells were found at high levels in lymph node and bone marrow at day 14 after transfer (1.4% and 2.5%, respectively) and the cells at these sites were predominantly CD62L+. The ΔCD19+CD62L+ T cells lacked direct lytic function and expressed low levels of granzyme B, consistent with memory T cells. Sorting of these cells from post-transfer PBMC showed that in vitro activation restored lytic activity. The transferred ΔCD19+CD62L+ T cells in post-infusion PBMC produced IFNγ and TNFα comparable to endogenous CMV-specific CD8+ CTL. These results demonstrate that a subset (5–10%) of transferred CD8+ CTL clones can persist long-term as functional memory T cells. The macaque CD8+ T cell clones are responsive to IL15 in vitro and a safe regimen for administering IL15 to macaques that boosts endogenous T cells has been identified. Studies are now in progress to determine if IL15 can enhance the efficiency with which effector and memory CD8+ T cell responses can be augmented after adoptive transfer of T cell clones.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 866-866
Author(s):  
Carolina Berger ◽  
Michael C. Jensen ◽  
Stanley R. Riddell

Abstract Adoptive transfer of T cells has been employed to reconstitute T cell immunity to viruses such as cytomegalovirus (CMV) in immunodeficient allogeneic stem cell transplant (SCT) patients and is being investigated to treat malignancies. In the allogeneic SCT setting, the T cells are derived from the donor and need to be isolated as clones or highly pure populations to avoid graft-versus-host disease. CD8+ T cells can be divided into defined subsets including CD62L− effector memory (TEM) and central memory T cells (TCM) expressing the CD62L lymph node homing molecule. Both TCM and TEM can give rise to cytolytic effector T cells (TE) after antigen stimulation and can be expanded in vitro for immunotherapy. However, the potential of T cells derived from either the TEM or TCM subset to persist in vivo has not been investigated. We used a macaque model to determine whether reconstitution of T cell memory to CMV by adoptive transfer of CD8+ T cell clones depended on their origin from either the CD62L+ TCM or CD62L− TEM subset. T cell clones were retrovirally transduced to express the macaque CD19 or CD20 surface marker to allow tracking of T cells in vivo. Clones derived from both TCM and TEM had similar avidity and proliferative capacity in vitro, and had a TE phenotype (CD62L−CCR7−CD28−CD127−, granzyme B+). TCM and TEM-derived T cell clones were transferred to macaques at doses of 3–6×108/kg and were both detected in the blood one day after transfer at 1.2–2.7% (low dose) to 20–25% (high dose) of CD8+ T cells. However, the frequency of TEM-derived T cells was undetectable after 3–5 days, and the cells were not present in lymph node or bone marrow obtained at day 14. By contrast, TCM-derived clones persisted in peripheral blood, migrated to tissue sites, and were detectable long-term at significant levels. A distinguishing feature of TCM-derived cells was their responsiveness to homeostatic cytokines. Only TCM-derived clones were rescued from apoptotic cell death by low-dose IL15 for >30 days in vitro and this correlated with higher levels of IL15Rα, IL2Rβ, and IL2Rγ, and of Bcl-xL and Bcl-2, which promote cell survival. To determine if the inability of TEM-derived clones to survive in vitro correlated with an increased susceptibility of cell death in vivo, we measured the proportion of infused cells that were positive for propidium iodide (PI) and Annexin V during the short period of in vivo persistence. One day after transfer, 41–45% of TEM-derived T cells were Annexin V+/PI+, analyzed directly in the blood or after 24 hours of culture. By contrast, only a minor fraction of an adoptively transferred TCM-derived T cell clone was Annexin V+/PI+ and the infused cells survived in vivo. A subset of the persisting T cells reacquired TCM marker (CD62L+CCR7+CD127+CD28+) in vivo and regained functional properties of TCM (direct lytic activity; rapid proliferation to antigen). These T cells produced IFN-γ and TNF-α after peptide stimulation, and studies are in progress to assess their in vivo response to antigen by delivery of T cells expressing CMV proteins. Our studies in a large animal model show for the first time that CD8+ TE derived from TCM but not TEM can persist long-term, occupy memory T cell niches, and restore TCM subsets of CMV-specific immunity. Thus, taking advantage of the genetic programming of cells that have become TCM might yield T cells with greater therapeutic activity and could be targeted for human studies of T cell therapy for both viral and malignant disease.


2002 ◽  
Vol 76 (8) ◽  
pp. 4080-4086 ◽  
Author(s):  
Jingwu Xu ◽  
Ali Ahmad ◽  
José Menezes

ABSTRACT The Epstein-Barr virus (EBV)-encoded latent membrane protein-1 (LMP-1) is thought to play a role in the EBV-induced B-cell transformation and immortalization. EBV has also been implicated in certain human T-cell lymphomas; however, the phenotypic effects of the expression of this oncoprotein in T cells are not known. To learn whether LMP-1 also induces phenotypic changes in T cells, we stably expressed it in human cell lines of T and B lineages and 25 LMP-1-expressing T-cell clones and 7 B-cell clones were examined. Our results show for the first time that, in sharp contrast to B cells, LMP-1 preferentially localizes to nuclei in T cells and does not induce the phenotypic changes in these cells that it induces in B cells, does not associate with TRAF proteins, and does not arrest the cell cycle in the G2/M phase. A computer-assisted analysis revealed that LMP-1 lacks the canonical nuclear localization signal. Our results suggest that this oncoprotein may not play the same role in the lymphomagenesis of T cells as it does in B cells.


2005 ◽  
Vol 79 (9) ◽  
pp. 5477-5488 ◽  
Author(s):  
Nancy H. Gudgeon ◽  
Graham S. Taylor ◽  
Heather M. Long ◽  
Tracey A. Haigh ◽  
Alan B. Rickinson

ABSTRACT T-cell memory to Epstein-Barr virus (EBV) was first demonstrated through regression of EBV-induced B-cell transformation to lymphoblastoid cell lines (LCLs) in virus-infected peripheral blood mononuclear cell (PBMC) cultures. Here, using donors with virus-specific T-cell memory to well-defined CD4 and CD8 epitopes, we reexamine recent reports that the effector cells mediating regression are EBV latent antigen-specific CD4+ and not, as previously assumed, CD8+ T cells. In regressing cultures, we find that the reversal of CD23+ B-cell proliferation was always coincident with an expansion of latent epitope-specific CD8+, but not CD4+, T cells; furthermore CD8+ T-cell clones derived from regressing cultures were epitope specific and reproduced regression when cocultivated with EBV-infected autologous B cells. In cultures of CD4-depleted PBMCs, there was less efficient expansion of these epitope-specific CD8+ T cells and correspondingly weaker regression. The data are consistent with an effector role for epitope-specific CD8+ T cells in regression and an auxiliary role for CD4+ T cells in expanding the CD8 response. However, we also occasionally observed late regression in CD8-depleted PBMC cultures, though again without any detectable expansion of preexisting epitope-specific CD4+ T-cell memory. CD4+ T-cell clones derived from such cultures were LCL specific in gamma interferon release assays but did not recognize any known EBV latent cycle protein or derived peptide. A subset of these clones was also cytolytic and could block LCL outgrowth. These novel effectors, whose antigen specificity remains to be determined, may also play a role in limiting virus-induced B-cell proliferation in vitro and in vivo.


2004 ◽  
Vol 10 (21) ◽  
pp. 7207-7219 ◽  
Author(s):  
Ekaterina S. Doubrovina ◽  
Mikhail M. Doubrovin ◽  
Sangyull Lee ◽  
Jae-Hung Shieh ◽  
Glen Heller ◽  
...  

2001 ◽  
Vol 75 (8) ◽  
pp. 3740-3752 ◽  
Author(s):  
Sarah Nikiforow ◽  
Kim Bottomly ◽  
George Miller

ABSTRACT In immunodeficient hosts, Epstein-Barr virus (EBV) often induces extensive B-cell lymphoproliferative disease and lymphoma. Without effective in vitro immune surveillance, B cells infected by the virus readily form immortalized cell lines. In the regression assay, memory T cells inhibit the formation of foci of EBV-transformed B cells that follows recent in vitro infection by EBV. No one has yet addressed which T cell regulates the early proliferative phase of B cells newly infected by EBV. Using new quantitative methods, we analyzed T-cell surveillance of EBV-mediated B-cell proliferation. We found that CD4+ T cells play a significant role in limiting proliferation of newly infected, activated CD23+ B cells. In the absence of T cells, EBV-infected CD23+ B cells divided rapidly during the first 3 weeks after infection. Removal of CD4+ but not CD8+ T cells also abrogated immune control. Purified CD4+ T cells eliminated outgrowth when added to EBV-infected B cells. Thus, unlike the killing of EBV-infected lymphoblastoid cell lines, in which CD8+ cytolytic T cells play an essential role, prevention of early-phase EBV-induced B-cell proliferation requires CD4+ effector T cells.


1987 ◽  
Vol 107 (2) ◽  
pp. 281-292 ◽  
Author(s):  
Giovanna Lombardi ◽  
Flavia del Gallo ◽  
Daniela Vismara ◽  
Enza Piccolella ◽  
C. de Martino ◽  
...  

1987 ◽  
Vol 39 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Patrick K. Lai ◽  
Mary E. Pauza ◽  
Barbara L. Switzer ◽  
Douglas Smith ◽  
David T. Purtilo

Sign in / Sign up

Export Citation Format

Share Document