Rexinoid-Triggered Differentiation and Tumor-Selective Apoptosis of AML by Protein Kinase A-Mediated De-Subordination.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2235-2235
Author(s):  
Ettore Mariano Schiavone ◽  
Lucia Altucci ◽  
Mariacarla De Simone ◽  
Felicetto Ferrara ◽  
Aurélie Rossin ◽  
...  

Abstract Apart from PML-RARα acute promyelocytic leukemia all other acute myeloid leukemias (AML) are unresponsive to retinoid differentiation therapy. However, in our study we show that elevating the levels of cyclic AMP (cAMP) confers onto retinoid X receptor (RXR)-selective agonists (“rexinoids”) the ability to induce terminal granulocyte differentiation and apoptosis of all-trans retinoic acid-resistant and insensitive AML cell lines and patients’ AML blasts. Protein kinase A activation leads to co-repressor release from the RAR subunit of the RAR-RXR heterodimer, resulting in “de-subordination” of otherwise silent RXR, which acquires transcriptional competence in response to cognate ligands. Rexinoid-cAMP induction of endogenous RARβ is blunted in mouse embryo fibroblasts lacking RARs, but re-introduction of exogenous RARα re-establishes responsiveness, thus confirming that the RARα-RXR heterodimer is the rexinoid mediator. The apoptogenic effect of this treatment involves enhanced expression of the death receptor DR5 and its cognate ligand, the tumor necrosis factor-related apoptosis inducing ligand (TRAIL), both of which are known to induce apoptosis in a tumor cell-selective manner and lead to the activation of initiator caspases. Immunohistochemistry confirmed induction of TRAIL and DR5 in AML patient blasts cultured “ex vivo”. AML patients’ blasts responded to rexinoid-cAMP combination treatment with induction of maturation and apoptosis, independent of karyotype, immunophenotype, and FAB classification. Clonogenic assays revealed complete inhibition of blast clonogenicity in four out of five tested samples. Indeed, it is known that cAMP levels can be elevated also by treating cells with 3′, 5′-cAMP phosphodiesterase inhibitors (PDEi’s). These observation and the clinical availability of the corresponding drugs provide a rationale for initiating clinical studies addressing the efficacy of combinatorial PDEi-rexinoid therapy in AML patients. Together with our recent finding that a very promising class of epigenetic anti-tumor drugs operates through activation of TRAIL expression (Nat Med2005, 11(1):7784), the possibility to target both the ligand (TRAIL) by HDAC inhibitors and the cognate receptors (DR4, DR5) by the above described rexinoid crosstalk may represent a promising therapeutic option which might lead, despite the genetic, morphologic, and clinical variability of AML, to a novel therapeutic option for AML patients by inducing a tumor-selective death pathway.

2003 ◽  
Vol 17 (11) ◽  
pp. 2189-2200 ◽  
Author(s):  
Takashi Hirakawa ◽  
Mario Ascoli

Abstract The pathways involved in activation of the ERK1/2 cascade in Leydig cells were examined in MA-10 cells expressing the recombinant human LH receptor (hLHR) and in primary cultures of rat Leydig cell precursors. In MA-10 cells expressing the recombinant hLHR, human choriogonadotropin-induced activation of ERK1/2 is effectively inhibited by overexpression of a cAMP phosphodiesterase (a manipulation that blunts the human choriogonadotropin-induced cAMP response), by addition of H89 (a selective inhibitor of protein kinase A), or by overexpression of the heat-stable protein kinase A inhibitor, but not by overexpression of an inactive mutant of this inhibitor. Stimulation of hLHR did not activate Rap1, but activated Ras in an H89-sensitive fashion. Addition of H89 to MA-10 cells that had been cotransfected with a guanosine triphosphatase-deficient mutant of Ras almost completely inhibited the hLHR-mediated activation of ERK1/2. We also show that 8-bromo-cAMP activates Ras and ERK1/2 in MA-10 cells and in primary cultures of rat Leydig cells precursors in an H89-sensitive fashion, whereas a cAMP analog 8-(4-chloro-phenylthio)-2′-O-methyl-cAMP (8CPT-2Me-cAMP) that is selective for cAMP-dependent guanine nucleotide exchange factor has no effect. Collectively, our results show that the hLHR-induced phosphorylation of ERK1/2 in Leydig cells is mediated by a protein kinase A-dependent activation of Ras.


1992 ◽  
Vol 283 (2) ◽  
pp. 487-491 ◽  
Author(s):  
F Burns ◽  
I W Rodger ◽  
N J Pyne

The type V cyclic GMP phosphodiesterase was partially purified from the high-speed supernatant of guinea-pig lung. The isoenzyme displayed linear kinetics for cyclic GMP hydrolysis, with Km = 2.2 +/- 0.2 microM and Vmax. = 1.2 +/- 0.08 nmol/min per mg. The selective type V phosphodiesterase inhibitor Zaprinast inhibited cyclic GMP hydrolysis with IC50 (concn. giving 50% inhibition) = 0.45 +/- 0.08 microM. Isobutylmethylxanthine promoted a 3-fold increase in the binding of cyclic GMP to the isoenzyme. The addition of the catalytic subunit of protein kinase A to an activation cocktail containing the partially purified type V phosphodiesterase resulted in a marked increase in Vmax. for cyclic GMP hydrolysis (approximately 10-fold at 40 units of protein kinase A). We have suggested that protein kinase A triggers phosphorylation of the phosphodiesterase, which results in activation of phosphodiesterase activity. In addition, the sensitivity to inhibition by Zaprinast is severely decreased (the IC50 for inhibition is 7.5 +/- 1.1 microM), suggesting that the potency of phosphodiesterase inhibitors is effected by phosphorylation of the enzyme.


2005 ◽  
Vol 4 (11) ◽  
pp. 1794-1800 ◽  
Author(s):  
Ailan Lu ◽  
Jeanne P. Hirsch

ABSTRACT Pseudohyphal and invasive growth in the yeast Saccharomyces cerevisiae is regulated by the kelch repeat-containing proteins Gpb1p and Gpb2p, which act downstream of the G protein α-subunit Gpa2p. Here we show that deletion of GPB1 and GPB2 causes increased haploid invasive growth in cells containing any one of the three protein kinase A (PKA) catalytic subunits, suggesting that Gpb1p and Gpb2p are able to inhibit each of these kinases. Cells containing gpb1Δ gpb2Δ mutations also display increased phosphorylation of the PKA substrates Sfl1p and Msn2p, indicating that Gpb1p and Gpb2p are negative regulators of PKA substrate phosphorylation. Stimulation of PKA-dependent signaling by gpb1Δ gpb2Δ mutations occurs in cells that lack both adenylyl cyclase and the high-affinity cyclic AMP (cAMP) phosphodiesterase. This effect is also seen in cells that lack the low-affinity cAMP phosphodiesterase. Given that these three enzymes control the synthesis and degradation of cAMP, these results indicate that the effect of Gpb1p and Gpb2p on PKA substrate phosphorylation does not occur by regulating the intracellular cAMP concentration. These findings suggest that Gpb1p and Gpb2p mediate their effects on the cAMP/PKA signaling pathway either by inhibiting the activity of PKA in a cAMP-independent manner or by activating phosphatases that act on PKA substrates.


1994 ◽  
Vol 269 (12) ◽  
pp. 8680-8685
Author(s):  
T. Kovala ◽  
I.A. Lorimer ◽  
A.M. Brickenden ◽  
E.H. Ball ◽  
B.D. Sanwal

2005 ◽  
Vol 65 (19) ◽  
pp. 8754-8765 ◽  
Author(s):  
Lucia Altucci ◽  
Aurélie Rossin ◽  
Oliver Hirsch ◽  
Angela Nebbioso ◽  
Dominique Vitoux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document