Anti-Adult T-Cell Leukemia Effects of a Novel Synthetic Retinoid, Am80 (Tamibarotene) through Inhibition of NF-κB.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2525-2525
Author(s):  
Tetsuro Nakazato ◽  
Chie Ishikawa ◽  
Taeko Okudaira ◽  
Mariko Tomita ◽  
Naoki Mori

Abstract Adult T-cell leukemia (ATL) is caused by human T-cell leukemia virus type I (HTLV-I) and remains incurable. Retinoid is a collective term for compounds, which bind to and activate retinoic acid receptors (RARα, β, γ and RXRα, β, γ), members of nuclear hormone receptor superfamily. It is involved in cell differentiation, morphogenesis, proliferation, and anti-neoplastic processes. The most important endogenous retinoid is all-trans-retinoic acid (ATRA), which is an RARα, β, and γ ligand. ATRA and its mimics have been in clinical use for treatment of acute promyelocytic leukemia (APL) and adult T-cell leukemia (ATL). Many synthetic retinoids have been developed and attempts to improve their medicinal properties have been made. Among them, a novel synthetic retinoid, Am80 (Tamibarotene) is an RARα- and RARβ-specific (but RARγ- and RXRs-nonbinding) synthetic retinoid that is expected to overcome ATRA resistance, because of several times more potent differentiation activity than ATRA and sustained plasma level during continuous administration due to a lower affinity for cellular retinoic acid binding protein. On this background, we examined the inhibitory effect of Am80 on HTLV-I-infected T-cell lines and primary ATL cells. Am80 showed little growth inhibition of peripheral blood mononuclear cells, but it markedly inhibited the growth of both HTLV-I-infected T-cell lines and primary ATL cells. Am 80 could arrest cells in the G1 phase of the cell cycle and induced apoptosis in HTLV-I-infected T-cell lines. The NF-κB pathway is critical for the immortalization and survival of HTLV-I-infected T cells. Therefore, NF-κB pathway was examined as potential targets of Am80 signaling. Am80 significantly inhibited phosphorylation of IκBα and NF-κB-DNA binding, in conjunction with the reduction of expression of proteins involved in the G1-S cell cycle transition and apoptosis. Furthermore, in animal studies, treatment with Am80 produced partial inhibition of growth of tumors of an HTLV-I-infected T-cell line transplanted subcutaneously in severe combined immunodeficient mice. These findings clearly demonstrate that Am80 is a potential inhibitor of NF-κB in ATL cells, and might be a useful therapeutic agent against ATL.

1997 ◽  
Vol 21 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Kakushi Matsushita ◽  
Naomichi Arima ◽  
Hideo Ohtsubo ◽  
Hiroshi Fujiwara ◽  
Shiroh Hidaka ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4810-4810
Author(s):  
Taeko Okudaira ◽  
Mariko Tomita ◽  
Mitsuomi Hirashima ◽  
Naoki Mori

Abstract Adult T-cell leukemia (ATL) is a fatal malignancy of T lymphocytes caused by infection with human T-cell leukemia virus type I (HTLV-I), and remains incurable. Therefore, novel treatments are urgently needed. Galectins are a family of animal lectins with diverse biological activities. They function both extracellularly, by interacting with cell-surface and extracellular matrix glycoproteins and glycolipids, and intracellularly, by interacting with cytoplasmic and nuclear proteins to modulate signaling pathways. The distribution of galectins is quite diverse, and their expression in various leukocytes has been observed. To determine whether expression of galectins in T cells correlates with HTLV-I infection, we surveyed a number of uninfected and HTLV-I-infected T-cell lines for galectin-3, -8, and -9 expression by RT-PCR. Expression of galectin-8 did not correlate with HTLV-I infection. Galectin-3 was abundantly expressed in HTLV-I-infected T-cell lines and primary ATL cells, but not in uninfected T-cell lines. In contrast, galectin-9 was abundantly expressed in uninfected T-cell lines and normal PBMCs, but not in HTLV-I-infected T-cell lines and primary ATL cells. HTLV-I transformed protein, Tax, did not affect the expression of galectin-3 and -9. It was previously shown that galectin-8 and -9 are proapoptotic proteins. We found that galectin-9 prevented cell growth of HTLV-I-infected T-cell lines and primary ATL cells compared with galectin-8. Galectin-9 induced cell cycle arrest by reducing the expression of cyclin D1, cyclin D2, cyclin B1, Cdk1, Cdk4, Cdk6, and Cdc25C, and apoptosis by reducing the expression of XIAP and c-IAP2. Most of these genes are known to be regulated by NF-κB, which plays a critical role in oncogenesis by HTLV-I. Galectin-9 suppressed phosphorylation of IκBα. Most importantly, treatment with galectin-9 reduced tumor formation from an HTLV-I-infected T-cell line, HUT-102, when these cells were inoculated s.c. into severe combined immunodeficient mice. Our results suggest that galectin-9 may be a new approach for management of ATL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2256-2256
Author(s):  
Chie Ishikawa ◽  
Taeko Okudaira ◽  
Tetsuro Nakazato ◽  
Mariko Tomita ◽  
Naoki Mori

Abstract The human T-cell leukemia virus type I (HTLV-I) is an oncogenic retrovirus that is etiologically linked to the genesis of adult T-cell leukemia (ATL). Emerging evidence suggests that the pathogenicity of ATL involves suppression of the overall immune response, although the underlying mechanism remains unclear. In this study, we demonstrated that HTLV-I transactivator Tax induces the aberrant expression of CD69, an early leukocyte activation molecule that plays an important role in downregulation of the immune response. In a panel of HTLV-I-infected T-cell lines, CD69 expression was highly elevated compared to HTLV-I-negative T-cell lines at both mRNA and protein levels. Furthermore, CD69 expression correlated with Tax expression. Peripheral blood mononuclear cells from ATL patients also showed an increased expression of CD69 compared with controls. In vitro infection of a T-cell line with HTLV-I was associated with CD69 expression in conjunction with the increasing Tax expression. Expression of CD69 was dependent upon Tax expression in the inducible Tax-expressing cell line JPX-9. Tax transactivated the CD69 gene promoter in a transient transfection assay. Using Tax mutants and dominant negative mutants of IκBs, IKKs, NIK, and CREB, we demonstrated that Tax-induced CD69 expression required the NF-κB and CREB signaling pathways. A series of deletion and mutation analyses of the CD69 gene promoter indicated that two NF-κB, two EGR, and a CRE sequences were critical for Tax transactivation. Electrophoretic mobility shift assay showed the formation of specific protein-DNA complexes in HTLV-I-infected T-cell lines. These results suggest that Tax directly transactivated CD69 gene expression, through multiple cis-acting elements and by the interplay of transcription factors of the NF-κB, EGR, and CREB families. Tax-induced CD69 expression may be involved in immune suppression in ATL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 845-845
Author(s):  
Noriaki Yoshida ◽  
Kennosuke Karube ◽  
Atae Utsunomiya ◽  
Kunihiro Tsukasaki ◽  
Yoshitaka Imaizumi ◽  
...  

Abstract Introduction Adult T-cell leukemia/lymphoma (ATL) is a human T-cell leukemia virus type-1-induced neoplasm with four clinical subtypes; acute, lymphoma, chronic and smoldering. Although chronic and smoldering subtypes are regarded as indolent ATL, about half of these cases progress to acute type ATL and subsequent death. Therefore, cases of indolent ATL also have poor prognosis and acute transformation is a predictive indicator for patients with indolent ATL. However, the molecular pathogenesis of acute transformation remains unknown. In the present study, oligo-array comparative genomic hybridization (CGH) and comprehensive gene-expression profiling (GEP) were applied to 27 and 35 cases of chronic and acute type ATL, respectively, in an effort to delineate the molecular pathogeneses of ATL, and especially the molecular mechanism of acute transformation. Materials and Methods All DNA and RNA used in this study were extracted from purified CD4-positive cells. Oligo-array CGH analyses and comprehensive GEP analyses were performed on 27 and 35 cases of chronic and acute type ATL, respectively. Subsequently, we established Tet-OFF ATL cell lines for functional analyses. Results Oligo-array CGH revealed that genomic loss of 9p21.3 was significantly characteristic of acute type ATL, but not chronic type ATL (p-value= 0.039). Although the minimal common deleted region of 9p21.3 contained MTAP, CDKN2A and CDKN2B, the expression level of only CDKN2A was reduced with genomic loss of 9p21.3 (Figure 1). Moreover, analysis of serial samples of a chronic type ATL patient showing acute transformation also revealed that reduction of CDKN2A expression by 9p21.3 loss was associated with acute transformation in this case. CDKN2A contains two known variants, INK4a and ARF. Re-expression of INK4a and ARF suppressed proliferation of Tet-OFF ATL cell lines, while the suppression efficiency of INK4a was stronger than that of ARF (Figure 2). In cell-cycle assays, the induction of INK4a and ARF decreased the proportion of S-phase cells. Additionally, re-expression of INK4a also increased the amount of apoptotic cells in induced cell lines, while re-expression of ARF did not have this effect. Since CDKN2A is a well-known cell cycle regulator, deregulation of the cell-cycle might be involved in acute transformation of chronic type ATL. In fact, deregulation of the cell-cycle pathway has been reported as a predictive indicator for the outcome in diffuse large B-cell lymphoma patients (Cancer Cell, 22:359-372). Therefore, we examined whether chronic ATL patients had alterations in cell-cycle related genes and found that chronic ATL patients could be divided into two groups. The group possessing alterations in these genes (referred to as “Cell cycle Alteration”) showed poorer prognosis compared with the group lacking such alterations (referred to as “Clean”) (p-value= 0.037) (Figure 3). Additionally, patients with such alterations tended to have earlier progression to acute type ATL. Conclusion These findings indicated that cell cycle-related genes play an important role in acute transformation and should serve as good prognostic markers for chronic type ATL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4803-4803
Author(s):  
Yasuhiro Maeda ◽  
Terufumi Yamaguchi ◽  
Yasuki Hijikata ◽  
Yasuyoshi Morita ◽  
Chikara Hirase ◽  
...  

Abstract We previously reported that all-trans retinoic acid (ATRA) inhibits growth in HTLV-1-positive T-cell lines and fresh cells from patients with adult T-cell leukemia. However, the mechanism of this inhibition is not clear. In the present study, we observed that NF-κB transcriptional activity as well as cell growth decreased significantly in HTLV-1-positive T-cell lines in the presence of ATRA. Furthermore, we observed that ATRA reduced HTLV-1 proviral DNA, HTLV-1 genes (gag, tax or pol mRNA) using the real time quantitative polymerase chain reaction. SIL-2R was reduced by ATRA in both protein level (culture supernantant) and mRNA level in HTLV-1-positive T-cell lines. Interestingly, ATRA significantly inhibited RT activity similar to azidothimidine (AZT) in HTLV-1-positive T-cell lines. Moreover, AZT was inhibitory of proviral DNA but not NF-kB transcriptional activity and sIL-2R on HTLV-1, however ATRA was inhibitory of NF-kB, proviral DNA and sIL-2R on HTLV-1. These results suggested that the decrease of sIL-2R induced by ATRA may be caused by the actions of a NF-kB inhibitor acting on the NF-kB/sIL-2R signal pathway. These results suggested that ATRA could have two roles, as a NF-kB inhibitor and as a RT inhibitor.


2016 ◽  
Vol 65 (1) ◽  
pp. 82-87 ◽  
Author(s):  
Haihao Wang ◽  
Qiannan Guo ◽  
Peiwen Yang ◽  
Guoxian Long

Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive T-cell malignancy. This study was designed to explore the expression and functional significance of microRNA (miR)-212 in ATL. The expression of miR-212 in human ATL tissues and cell lines were investigated. Gain-of-function experiments were carried out to determine the roles of miR-212 in cell proliferation, tumorigenesis, cell cycle progression, and apoptosis. We also identified and functionally characterized the target genes of miR-212 in ATL cells. Compared with normal lymph node biopsies, lymphoma samples from ATL patients displayed underexpression of miR-212 (p=0.0032). Consistently, miR-212 was downregulated in human ATL cell lines, compared with normal T lymphocytes. Restoration of miR-212 significantly (p<0.05) inhibited ATL cell proliferation and tumorigenesis in mice. Overexpression of miR-212 led to an accumulation of G0/G1-phase cells and a concomitant reduction of S-phase cells. Moreover, enforced expression of miR-212-induced significant apoptosis in ATL cells. CCND3, which encodes a cell cycle regulator cyclin D3, was identified as a direct target of miR-212 in ATL cells. Rescue experiments with a miR-212-resistant variant of CCND3 demonstrated that overexpression of CCND3 restored cell-cycle progression and attenuated apoptotic response in miR-212-overexpressing ATL cells. Taken together, miR-212 exerts growth-suppressive effects in ATL cells largely by targeting CCND3 and may have therapeutic potential in ATL.


2004 ◽  
Vol 78 (9) ◽  
pp. 4582-4590 ◽  
Author(s):  
Naoki Mori ◽  
Takehiro Matsuda ◽  
Masayuki Tadano ◽  
Takao Kinjo ◽  
Yasuaki Yamada ◽  
...  

ABSTRACT Inhibition of histone deacetylase (HDAC) activity induces growth arrest, differentiation, and, in certain cell types, apoptosis. FR901228, FK228, or depsipeptide, is an HDAC inhibitor effective in T-cell lymphomas. Adult T-cell leukemia (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1) and remains incurable. We examined whether FR901228 is effective for treatment of ATL by assessing its ability to induce apoptosis of HTLV-1-infected T-cell lines and primary leukemic cells from ATL patients. FR901228 induced apoptosis of Tax-expressing and -unexpressing HTLV-1-infected T-cell lines and selective apoptosis of primary ATL cells, especially those of patients with acute ATL. FR901228 also efficiently reduced the DNA binding of NF-κB and AP-1 in HTLV-1-infected T-cell lines and primary ATL cells and down-regulated the expression of Bcl-xL and cyclin D2, regulated by NF-κB. Although the viral protein Tax is an activator of NF-κB and AP-1, FR901228-induced apoptosis was not associated with reduced expression of Tax. In vivo use of FR901228 partly inhibited the growth of tumors of HTLV-1-infected T cells transplanted subcutaneously in SCID mice. Our results indicated that FR901228 could induce apoptosis of these cells and suppress the expression of NF-κB and AP-1 and suggest that FR901228 could be therapeutically effective in ATL.


Blood ◽  
2009 ◽  
Vol 113 (20) ◽  
pp. 4914-4917 ◽  
Author(s):  
Marcia Bellon ◽  
Yves Lepelletier ◽  
Olivier Hermine ◽  
Christophe Nicot

Human T-cell leukemia virus type-I (HTLV-I) is the etiologic agent of adult T-cell leukemia (ATL), an aggressive lymphoproliferative disease. MicroRNAs (miRNAs) are differentially expressed during hematopoiesis and lineage commitment of hematopoietic stem cell progenitors (HSCPs). Here, we report aberrant expression of hematopoietic-specific miR-223, miR-181a, miR-150, miR-142.3p, and miR-155 in HTLV-I–infected cells in vitro and uncultured ex vivo ATL cells. Our results suggest that HTLV-I–infected cells have an unbalanced expression of miRNA that favors T-cell differentiation. We also found altered expression of miRNA previously recognized as innate immunity regulators: miR-155, miR-125a, miR-132, and miR-146. Strikingly, our data also revealed significant differences between ex vivo ATL tumor cells and in vitro HTLV-I cell lines. Specifically, miR-150 and miR-223 were up-regulated in ATL patients but consistently down-regulated in HTLV-I cell lines, suggesting that ATL cells and in vitro–established cells are derived from distinct cellular populations.


Sign in / Sign up

Export Citation Format

Share Document