Comparative Genomic Hybridization on Immunophenotypically Pure, Flow Sorted Plasmocyte Populations Shows an Improved Detection of Chromosomal Abnormalities in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3404-3404
Author(s):  
Brigitte Maes ◽  
Sabine Franke ◽  
Greet Voets ◽  
Karen Hensen ◽  
Hanne Jongen ◽  
...  

Abstract Multiple myeloma (MM) is a clonal plasmocyte disorder often preceded by a premalignant condition, monoclonal gammopathy of undetermined significance (MGUS). Chromosomal abnormalities in MM are complex, of which some are at present considered the most important prognostic indicators in MM. Their role in the pathogenesis of MM and in the transformation from MGUS towards MM is however not fully understood, at least partly due to the low-level bone marrow infiltration hampering cytogenetic analysis. In this study, a unique combination of techniques was used to allow whole genome screening for numerical chromosomal abnormalities of immunophenotypically pure, aberrant plasmocyte populations selected from the bone marrow by flow cytometry. Fourteen bone marrow samples from patients with either MM (n= 11) (first diagnosis or relapsing) or MGUS (n=3), with plasmocyte percentages as low as 1 % (range 1 – 57 %), were analyzed. Aberrant/monoclonal plasmocyte populations were identified based on the expression of CD56 and/or light chain restriction within a CD138+/CD38++ gate and sorted using a FACSAria® (BD, US). Whole genomic DNA was extracted from the CD56+or−/κ or λ+ plasmocyte populations, amplified with degenerate oligonucleotide primer-PCR and used for comparative genomic hybridization (CGH). CGH results were confirmed by interphase fluorescent in situ hybridization. All cases (MM and MGUS) showed the presence of multiple chromosomal abnormalities with a minimum of 5 each. All chromosomes were at least one time involved. Relapsing MM showed a mean number of chromosomal changes of 10 compared to 7 and 6 in newly diagnosed MM and MGUS cases respectively, suggesting karyotypic instability during the course of the disease. The presence of chromosomal aberrations known to be frequently occurring in MM, was confirmed such as gains of 1q (4/11, 36%), 7q (5/11, 45%) and 5q11-q32 (7/11, 64%) and losses of 13q (6/11, 55 %) and 16q (4/11, 36%). This study also showed a high incidence of chromosomal abnormalities not previously or only rarely described in MM, such as gains of 4q11-q22 (9/11, 82 %) and 8q21-q23 (5/11, 45%) and loss of 20q (5/11, 45 %). Some abnormalities were detected in both MM and MGUS, such as gain of 5q and loss of 16q, and may be considered very early, primary aberrations. Gain of 4q11-q22 was detected in almost all MM cases but in none of the MGUS cases, suggesting this abnormality might be involved in disease progression. These results indicate a higher complexity and diversity of chromosomal abnormalities in both MM and MGUS, than has already been described. CGH on flow sorted, immunophenotypically pure, aberrant plasmocytes allows an adequate genetic analysis of MGUS, which should ultimately result in the identification of genetic changes involved in the transformation of MGUS towards MM.

1998 ◽  
Vol 83 (5) ◽  
pp. 1766-1770 ◽  
Author(s):  
Nallasivam Palanisamy ◽  
Yasuo Imanishi ◽  
Pulivarthi H. Rao ◽  
Hideki Tahara ◽  
R. S. K. Chaganti ◽  
...  

The molecular basis of parathyroid adenomatosis includes defects in the cyclin D1/PRAD1 and MEN1 genes but is, in large part, unknown. To identify new locations of parathyroid oncogenes or tumor suppressor genes, and to further establish the importance of DNA losses described by molecular allelotyping, we performed comparative genomic hybridization (CGH) on a panel of 53 typical sporadic (nonfamilial) parathyroid adenomas. CGH is a new molecular cytogenetic technique in which the entire tumor genome is screened for chromosomal gains and/or losses. Two abnormalities, not previously described, were found recurrently: gain of chromosome 16p (6 of 53 tumors, or 11%) and gain of chromosome 19p (5 of 53, or 9%). Losses were found frequently on 11p (14 of 53, or 26%), as well as 11q (18 of 53, or 34%). Recurrent losses were also seen on chromosomes 1p, 1q, 6q, 9p, 9q, 13q, and 15q, with frequencies ranging from 8–19%. Twenty-four of the 53 adenomas were also extensively analyzed with polymorphic microsatellite markers for allelic losses, either in this study (11 cases) or previously (13 cases). Molecular allelotyping results were highly concordant with CGH results in these tumors (concordance level of 97.5% for all informative markers/chromosome arms examined). In conclusion, CGH has identified the first two known chromosomal gain defects in parathyroid adenomas, suggesting the existence of direct-acting parathyroid oncogenes on chromosomes 16 and 19. CGH has confirmed the locations of putative parathyroid tumor suppressor genes, also defined by molecular allelotyping, on chromosomes 1p, 6q, 9p, 11q, 13q, and 15q. Finally, CGH has provided new evidence favoring the possibility that distinct parathyroid tumor suppressors exist on 1p and 1q, and has raised the possibility of a parathyroid tumor suppressor gene on 11p, distinct from the MEN1 gene on 11q. CGH can identify recurrent genetic abnormalities in hyperparathyroidism, especially chromosomal gains, that other methods do not detect.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 3007-3010 ◽  
Author(s):  
Juan C. Cigudosa ◽  
Pulivarthi H. Rao ◽  
M. Jose Calasanz ◽  
M. Dolores Odero ◽  
Joseph Michaeli ◽  
...  

Clonal chromosomal changes in multiple myeloma (MM) and related disorders are not well defined, mainly due to the low in vivo and in vitro mitotic index of plasma cells. This difficulty can be overcome by using comparative genomic hybridization (CGH), a DNA-based technique that gives information about chromosomal copy number changes in tumors. We have performed CGH on 25 cases of MM, 4 cases of monoclonal gammopathy of uncertain significance, and 1 case of Waldenstrom's macroglobulinemia. G-banding analysis of the same group of patients demonstrated clonal chromosomal changes in only 13 (43%), whereas by CGH, the number of cases with clonal chromosomal gains and losses increased to 21 (70%). The most common recurrent changes detected by CGH were gain of chromosome 19 or 19p and complete or partial deletions of chromosome 13. +19, an anomaly that has so far not been detected as primary or recurrent change by G-banding analysis of these tumors, was noted in 2 cases as a unique change. Other recurrent changes included gains of 9q, 11q, 12q, 15q, 17q, and 22q and losses of 6q and 16q. We have been able to narrow the commonly deleted regions on 6q and 13q to bands 6q21 and 13q14-21. Gain of 11q and deletion of 13q, which have previously been associated with poor outcome, can thus be detected by CGH, allowing the use of this technique for prognostic evaluation of patients, without relying on the success of conventional cytogenetic analysis.


Sign in / Sign up

Export Citation Format

Share Document