Different Kinetics and Function of Vascular Endothelial Growth Factor Recepotor-1 and −2 during Hemangioblast Development from Primate Embryonic Stem Cells.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3920-3920
Author(s):  
Katsutsugu Umeda ◽  
Toshio Heike ◽  
Gen Shinoda ◽  
Akira Niwa ◽  
Masato Arai ◽  
...  

Abstract The close developmental association between hematopoietic and endothelial cells suggests that both lineage cells share a common precursor, the hemangioblast. The vascular endothelial growth factor (VEGF)-A system has been proven to have roles in the embryonic development of hemangioblast in mouse by the use of embryos or embryonic stem (ES) cells deprived of the genes encoding its ligand or receptors (VEGFR-1 and VEGFR-2). On the other hand, there have been only a few reports on the hemangioblast development during primate (human and monkey) embryogenesis. We have previously demonstrated that the hemangioblast is highly enriched in the VEGFR-2high CD34+ cell fraction, differentiated from cynomolgus monkey ES cells by 6-day coculture with OP9 stromal cells. In the current study, we examined whether the VEGF-A system was involved in the development of hemangioblast induced from primate ES cells by using the coculture system. VEGFR-1 and −2 were expressed by undifferentiated monkey ES cells at low levels. The VEGFR-2low cells gradually decreased while VEGFR-2high cells could be detected on day 6. On the other hand, VEGFR-1 was constantly expressed at low levels on day 6 and thereafter. Exogenous VEGF-A165, the action of which is mediated VEGFR-1 and VEGFR-2, increased the proportion of VEGFR-2high CD34+ cells in a dose-dependent manner. Addition of VEGF-E (VEGFR-2-specific agonist) and VEGFR-1 blocking antibody resulted in the increase of VEGFR-2high CD34+ cells in a dose-dependent manner, while VEGFR-2 blocking antibody suppressed their development. Thus, VEGF-A/VEGFR-2 interaction promoted the development of hemangioblast, while VEGF-A/VEGFR-1 interaction acted as a negative regulator. We then examined when VEGF-related signals work on VEGFR-2high cell development by changing factors on day 4. The proportion of VEGFR-2high CD34+ cells with the last 2-day VEGF-A165 and -E treatment were almost equivalent to that with continuous exposure to the VEGF. On the contrary, initial 4-day VEGF-A165 and -E treatment did not any stimulatory effects on VEGFR-2high CD34+ cell development. Our previous results show that during differentiation, Brachyury (early mesodermal marker) is first expressed on day 4, followed by the up-regulation of genes, such as SCL, LMO2, and MYB, representing hematopoietic and/or endothelial potentials on day 6. Collectively, VEGFR-2-mediated signals might contribute to the commitment and/or expansion of the hemangioblast rather than their development. This coculture system provides an opportunity to better understand the regulative mechanisms on early hematopoietic and endothelial cell development, which remains unresolved by experiments using human embryos.

Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2275-2283 ◽  
Author(s):  
Naoki Nakayama ◽  
Jae Lee ◽  
Laura Chiu

Abstract The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the β-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes with BMP-4. The CD45+ myelomonocytic progenitors and Ter119+ erythroid cells began to be detected with 0.5 ng/mL BMP-4, and their levels plateaued at approximately 2 ng/mL. VEGF alone weakly elevated the CD34+ cell population though no lymphohematopoietic progenitors were induced. However, when combined with BMP-4, 2 to 20 ng/mL VEGF synergistically augmented the BMP-4-dependent generation of erythro-myeloid CFCs and lymphoid progenitors from ES cells, which were enriched in CD34+ CD31lo and CD34+CD45− cell populations, respectively, in a dose-dependent manner. Furthermore, during the 7 days of in vitro differentiation, BMP-4 was required within the first 4 days, whereas VEGF was functional after the action of BMP-4 (in the last 3 days). Thus, VEGF is a synergistic enhancer for the BMP-4-dependent differentiation processes, and it seems to be achieved by the ordered action of the 2 factors.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2283-2295 ◽  
Author(s):  
Naoki Nakayama ◽  
Inghwa Fang ◽  
Gary Elliott

Abstract Differentiation of totipotent mouse embryonic stem (ES) cells to various lymphohematopoietic cells is an in vitro model of the hematopoietic cell development during embryogenesis. To understand this process at cellular levels, differentiation intermediates were investigated. ES cells generated progeny expressing CD34, which was significantly enhanced by vascular endothelial growth factor (VEGF). The isolated CD34+ cells were enriched for myeloid colony-forming cells but not significantly for erythroid colony-forming cells. When cultured on OP9 stroma cells in the presence of interleukin-2 and interleukin-7, the CD34+ cells developed two types of B220+ CD34−lymphocytes: CD3− cytotoxic lymphocytes and CD19+ pre-B cells, and such lymphoid potential was highly enriched in the CD34+ population. Interestingly, the cytotoxic cells expressed the natural killer (NK) cell markers, such as NKR-P1, perforin, and granzymes, classified into two types, one of which showed target specificity of NK cells. Thus, ES cells have potential to generate NK-type cytotoxic lymphocytes in vitro in addition to erythro-myeloid cells and pre-B cells, and both myeloid and lymphoid cells seem to be derived from the CD34+intermediate, on which VEGF may play an important role.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2275-2283 ◽  
Author(s):  
Naoki Nakayama ◽  
Jae Lee ◽  
Laura Chiu

The totipotent mouse embryonic stem (ES) cell is known to differentiate into cells expressing the β-globin gene when stimulated with bone morphogenetic protein (BMP)-4. Here, we demonstrate that BMP-4 is essential for generating both erythro-myeloid colony-forming cells (CFCs) and lymphoid (B and NK) progenitor cells from ES cells and that vascular endothelial growth factor (VEGF) synergizes with BMP-4. The CD45+ myelomonocytic progenitors and Ter119+ erythroid cells began to be detected with 0.5 ng/mL BMP-4, and their levels plateaued at approximately 2 ng/mL. VEGF alone weakly elevated the CD34+ cell population though no lymphohematopoietic progenitors were induced. However, when combined with BMP-4, 2 to 20 ng/mL VEGF synergistically augmented the BMP-4-dependent generation of erythro-myeloid CFCs and lymphoid progenitors from ES cells, which were enriched in CD34+ CD31lo and CD34+CD45− cell populations, respectively, in a dose-dependent manner. Furthermore, during the 7 days of in vitro differentiation, BMP-4 was required within the first 4 days, whereas VEGF was functional after the action of BMP-4 (in the last 3 days). Thus, VEGF is a synergistic enhancer for the BMP-4-dependent differentiation processes, and it seems to be achieved by the ordered action of the 2 factors.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2283-2295 ◽  
Author(s):  
Naoki Nakayama ◽  
Inghwa Fang ◽  
Gary Elliott

Differentiation of totipotent mouse embryonic stem (ES) cells to various lymphohematopoietic cells is an in vitro model of the hematopoietic cell development during embryogenesis. To understand this process at cellular levels, differentiation intermediates were investigated. ES cells generated progeny expressing CD34, which was significantly enhanced by vascular endothelial growth factor (VEGF). The isolated CD34+ cells were enriched for myeloid colony-forming cells but not significantly for erythroid colony-forming cells. When cultured on OP9 stroma cells in the presence of interleukin-2 and interleukin-7, the CD34+ cells developed two types of B220+ CD34−lymphocytes: CD3− cytotoxic lymphocytes and CD19+ pre-B cells, and such lymphoid potential was highly enriched in the CD34+ population. Interestingly, the cytotoxic cells expressed the natural killer (NK) cell markers, such as NKR-P1, perforin, and granzymes, classified into two types, one of which showed target specificity of NK cells. Thus, ES cells have potential to generate NK-type cytotoxic lymphocytes in vitro in addition to erythro-myeloid cells and pre-B cells, and both myeloid and lymphoid cells seem to be derived from the CD34+intermediate, on which VEGF may play an important role.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1979-1987 ◽  
Author(s):  
Victoria L. Bautch ◽  
Sambra D. Redick ◽  
Aaron Scalia ◽  
Marco Harmaty ◽  
Peter Carmeliet ◽  
...  

Abstract Vascular endothelial growth factor (VEGF) signaling is required for both differentiation and proliferation of vascular endothelium. Analysis of differentiated embryonic stem cells with one or both VEGF-A alleles deleted showed that both the differentiation and the expansion of endothelial cells are blocked during vasculogenesis. Blood island formation was reduced by half in hemizygous mutant VEGF cultures and by 10-fold in homozygous mutant VEGF cultures. Homozygous mutant cultures could be partially rescued by the addition of exogenous VEGF. RNA levels for the endothelial adhesion receptors ICAM-2 and PECAM were reduced in homozygous mutant cultures, but ICAM-2 RNA levels decreased substantially, whereas PECAM RNA levels remained at hemizygous levels. The quantitative data correlated with the antibody staining patterns because cells that were not organized into vessels expressed PECAM but not ICAM-2. These PECAM+ cell clumps accumulated in mutant cultures as vessel density decreased, suggesting that they were endothelial cell precursors blocked from maturation. A subset of PECAM+ cells in clumps expressed stage-specific embryonic antigen-1 (SSEA-1), and all were ICAM-2(−) and CD34(−), whereas vascular endothelial cells incorporated into vessels were PECAM(+), ICAM-2(+), CD34(+), and SSEA-1(−). Analysis of flk-1 expression indicated that a subset of vascular precursor cells coexpressed PECAM and flk-1. These data suggest that VEGF signaling acts in a dose-dependent manner to affect both a specific differentiation step and the subsequent expansion of endothelial cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chengshi Xu ◽  
Xing Wu ◽  
Jianhong Zhu

Cancer stem-like cells, which have been described as tumor-initiating cells or tumor-propagating cells, play a crucial role in our fundamental understanding of glioblastoma multiforme (GBM) and its recurrence. GBM is a lethal cancer, characterized by florid vascularization and aberrantly elevated vascular endothelial growth factor (VEGF). VEGF promotes tumorigenesis and angiogenesis of human GBM stem-like cells (GBSCs). However, whether and how VEGF contributes to GBSCs proliferation remain largely uncertain. In this study, human GBSCs were isolated from surgical specimens of glioblastoma and cultured in medium favored for stem cell growth. Neural Colony-Forming Cell Assay and ATP assay were performed to measure GBSC proliferation under normoxia (20% O2) and hypoxia (1% O2). Our observations demonstrate that exogenous VEGF stimulates GBSC proliferation in a dose-dependent manner via VEGF Receptor 2 (VEGFR2); while VEGF Receptor 1 (VEGFR1) has a negative feedback effect on VEGFR2 when cells were exposed to higher concentration of VEGF. These results suggest that suppressing VEGFR2-dependent GBSC proliferation is a potentially therapeutic strategy in GBM.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253258
Author(s):  
Sarah Line Bring Truelsen ◽  
Nabi Mousavi ◽  
Haoche Wei ◽  
Lucy Harvey ◽  
Rikke Stausholm ◽  
...  

The treatment response to anti-angiogenic agents varies among cancer patients and predictive biomarkers are needed to identify patients with resistant cancer or guide the choice of anti-angiogenic treatment. We present “the Cancer Angiogenesis Co-Culture (CACC) assay”, an in vitro Functional Precision Medicine assay which enables the study of tumouroid induced angiogenesis. This assay can quantify the ability of a patient-derived tumouroid to induce vascularization by measuring the induction of tube formation in a co-culture of vascular cells and tumoroids established from the primary colorectal tumour or a metastasis. Furthermore, the assay can quantify the sensitivity of patient-derived tumoroids to anti-angiogenic therapies. We observed that tube formation increased in a dose-dependent manner upon treatment with the pro-angiogenic factor vascular endothelial growth factor A (VEGF-A). When investigating the angiogenic potential of tumoroids from 12 patients we found that 9 tumoroid cultures induced a significant increase in tube formation compared to controls without tumoroids. In these 9 angiogenic tumoroid cultures the tube formation could be abolished by treatment with one or more of the investigated anti-angiogenic agents. The 3 non-angiogenic tumoroid cultures secreted VEGF-A but we observed no correlation between the amount of tube formation and tumoroid-secreted VEGF-A. Our data suggests that the CACC assay recapitulates the complexity of tumour angiogenesis, and when clinically verified, could prove a valuable tool to quantify sensitivity towards different anti-angiogenic agents.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Soon-Jung Park ◽  
Seul-Bi Lee ◽  
Dong-Sup Lee ◽  
Young-Joon Ryu ◽  
Gene Lee ◽  
...  

Chenodeoxycholic acid (CDCA), a farnesoid X receptor (FXR) ligand, is a member of the nuclear receptor family and is probably involved in regulating the cellular activities of embryonic stem (ES) cells. Recently, although it was reported that the FXR ligand can mediate differentiation, apoptosis, and/or growth arrest in several cell types, it is still not well known how CDCA mediates effects in ES cells. Therefore, we investigated the direct effect of CDCA on mES cells. Feeder-free mES cells were treated in a dose-dependent manner with CDCA (50, 100, and 200 μM) for 72 h, and then a 100 μM CDCA treatment was performed for an additional 72 h. We analyzed the morphology, cell growth, cell characteristics, immunocytochemistry, and RT-PCR. In CDCA-treated cells, we observed the disappearance of pluripotent stem cell markers including alkaline phosphatase, Oct4, and Nanog and a time- and dose-dependent increase in expression of nestin, PAX6, andα-smooth muscle actin, but notα-fetoprotein. The 100 μM CDCA-treated cells in their second passage continued this differentiation pattern similar to those in the controls. In conclusion, these results suggest that CDCA can guide mES cells by an FXR-independent pathway to differentiate into ectoderm and/or mesoderm, but not endoderm.


2019 ◽  
Author(s):  
Daniel J. Page ◽  
Claire E. Clarkin ◽  
Raj Mani ◽  
Najeed A. Khan ◽  
Jonathan I. Dawson ◽  
...  

AbstractThe retention and sustained activity of therapeutic proteins at delivery sites are goals of regenerative medicine. Vascular endothelial growth factor (VEGF) has significant potential in promoting the growth and regeneration of blood vessels but is intrinsically labile. This is exacerbated by the inflammatory microenvironments at sites requiring regeneration. For VEGF to be efficacious it may require a carrier that stabilises it, protects it from degradation and retains it at a site of interest. In this study we tested the hypothesis that injectable nanoclay gels composed of Laponite XLG can stabilise VEGF and retain it in active form for therapeutic delivery. To achieve this, VEGF was incorporated in Laponite gels and its activity tested at a range of concentrations using in vivo cell culture tubulogenesis assays and in vivo angiogenesis assays. We found that VEGF-Laponite gels enhanced tubulogenesis in a dose-dependent manner in vivo. When administered subcutaneously in vivo Laponite was retained at an injection site for up to a period of three weeks and promoted a 4-fold increase in blood vessel formation compared with alginate or vehicle controls as confirmed by CD31 staining. Notably, in contrast to alginate, Laponite gels did not release VEGF, indicating a strong interaction between the growth factor and the nanoclay, and suggesting that Laponite enhancement of VEGF efficacy is due to its retention at an implantation site over a prolonged period. Our approach provides a robust method for delivery of bioactive recombinant VEGF without the necessity for complex hydrogel or protein engineering.


Sign in / Sign up

Export Citation Format

Share Document