Rapamycin Induces Balb/C Murine CD4+CD25+Foxp3+ T Cells Proliferations.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5148-5148
Author(s):  
Mingzhen Yang ◽  
De Pei Wu ◽  
Yanhui Yuan ◽  
Jiannong Cen ◽  
Weirong Chang ◽  
...  

Abstract Rapamycin(RAPA) is an immunosuppressive agent, it inhibits T lymphocyte activation and proliferation by suppressed antigen and cytokine(interleukin-2, interleukin-4 and interleukin-15), it was always used to treat autoimmune disease and graft versus host disease. RAPA can selectively expand mice CD4+CD25+FoxP3+ regulatory T cells in vitro, in this study, we demonstrated RAPA induce mice CD4+ CD25+FoxP3+ regulatory T cells proliferation in vivo. Balb/C mice were used between 8–10 weeks of age, weight was 20±2g, RAPA was given to Balb/C murine 0.4mg/day intragastric administration according to man dose, the same mice of age and weight were given with steriled water as the control, all mice were kept under specific pathogen-free conditions. Drinking water and food were steriled. After three weeks, peripheral blood was collected and spleen cells were prepared, CD4+CD25+T cells were detected with FCM(CD4-pcy5, CD25-FITC), the relative levels of foxp3 mRNA were determined by real-time quantitative RT-PCR in total splenocytes. The CD4+CD25+T cell of peripheral blood of experimental group and control group was (9.24±4.16)% and (4.32±1.26)%, respectively (P<0.01), and CD4+CD25+T cell of experimental mice splenocytes was (22.99±10.59)%, while control group was (7.37± 2.91)% (P<0.01). real-time quantitative RT-PCR showed that the levels of foxp3 mRNA of experimental mice splenocytes was 6 folds than control group(P<0.01). CD4+CD25+T cells and CD+CD25−T cells were enriched with CD4+CD25+T regulate cells isolation kits from experimental Balb/C mice, we used mixed leukocyte reaction for CD4+CD25+T cells suppressor function. The CD4+CD25+T cells can inhibit the proliferation of CD4+CD25−T cells and inhibition ratio was about 50%. Our result demonstrated that RAPA can induce Balb/C murine CD4+CD25+Foxp3+T cells proliferation in vivo, which suggested RAPA could increase CD4+CD25+Foxp3+T cells on the autoimmune disease and graft versus host disease treatment.

Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 3140-3147 ◽  
Author(s):  
Joshua A. Grass ◽  
Tamim Wafa ◽  
Aaron Reames ◽  
David Wages ◽  
Laurence Corash ◽  
...  

Abstract Photochemical treatment (PCT) with the psoralen S-59 and long wavelength ultraviolet light (UVA) inactivates high titers of contaminating viruses, bacteria, and leukocytes in human platelet concentrates. The present study evaluated the efficacy of PCT to prevent transfusion-associated graft-versus-host disease (TA-GVHD) in vivo using a well-characterized parent to F1 murine transfusion model. Recipient mice in four treatment groups were transfused with 108 splenic leukocytes. (1) Control group mice received syngeneic splenic leukocyte transfusions; (2) GVHD group mice received untreated allogeneic splenic leukocytes; (3) gamma radiation group mice received gamma irradiated (2,500 cGy) allogeneic splenic leukocytes; and (4) PCT group mice received allogeneic splenic leukocytes treated with 150 μmol/L S-59 and 2.1 J/cm2UVA. Multiple biological and clinical parameters were used to monitor the development of TA-GVHD in recipient mice over a 10-week posttransfusion observation period: peripheral blood cell levels, spleen size, engraftment by donor T cells, thymic cellularity, clinical signs of TA-GVHD (weight loss, activity, posture, fur texture, skin integrity), and histologic lesions of liver, spleen, bone marrow, and skin. Mice in the control group remained healthy and free of detectable disease. Mice in the GVHD group developed clinical and histological lesions of TA-GVHD, including pancytopenia, marked splenomegaly, wasting, engraftment with donor derived T cells, and thymic hypoplasia. In contrast, mice transfused with splenic leukocytes treated with (2,500 cGy) gamma radiation or 150 μmol/L S-59 and 2.1 J/cm2 UVA remained healthy and did not develop detectable TA-GVHD. Using an in vitro T-cell proliferation assay, greater than 105.1 murine T cells were inactivated by PCT. Therefore, in addition to inactivating high levels of pathogenic viruses and bacteria in PC, these data indicate that PCT is an effective alternative to gamma irradiation for prevention of TA-GVHD.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1726-1734 ◽  
Author(s):  
Melanie C. Ruzek ◽  
James S. Waire ◽  
Deborah Hopkins ◽  
Gina LaCorcia ◽  
Jennifer Sullivan ◽  
...  

Abstract Antithymocyte/antilymphocyte globulins are polyclonal antihuman T-cell antibodies used clinically to treat acute transplant rejection. These reagents deplete T cells, but a rabbit antihuman thymocyte globulin has also been shown to induce regulatory T cells in vitro. To examine whether antithymocyte globulin–induced regulatory cells might be functional in vivo, we generated a corresponding rabbit antimurine thymocyte globulin (mATG) and tested its ability to induce regulatory cells in vitro and whether those cells can inhibit acute graft-versus-host disease (GVHD) in vivo upon adoptive transfer. In vitro, mATG induces a population of CD4+CD25+ T cells that express several cell surface molecules representative of regulatory T cells. These cells do not express Foxp3 at either the protein or mRNA level, but do show suppressive function both in vitro and in vivo when adoptively transferred into a model of GVHD. These results demonstrate that in a murine system, antithymocyte globulin induces cells with suppressive activity that also function in vivo to protect against acute GVHD. Thus, in both murine and human systems, antithymocyte globulins not only deplete T cells, but also appear to generate regulatory cells. The in vitro generation of regulatory cells by anti-thymocyte globulins could provide ad-ditional therapeutic modalities for immune-mediated disease.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1972-1972
Author(s):  
Gerald P. Morris ◽  
Geoffrey L Uy ◽  
David L Donermeyer ◽  
Paul M Allen ◽  
John F. DiPersio

Abstract Abstract 1972 The nature of the T cell repertoire mediating pathologic in vivo alloreactivity is an important question for understanding the development of acute graft-versus-host disease (aGvHD) following clinical allogeneic transplantation. We have previously demonstrated that the small proportion of T cells that naturally express 2 T cell receptors (TCR) as a consequence of incomplete TCRa allelic exclusion during thymic development contribute disproportionately to the alloreactive T cell repertoire, both in vitro and in vivo in a mouse model of graft versus host disease (GvHD) (J. Immunol., 182:6639, 2009). Here, we extend these findings to human biology, examining dual TCR T cells from healthy volunteer donors (n = 12) and patients who have undergone allogeneic hematopoietic stem cell transplantation (HSCT) (n = 19). Peripheral blood was collected at day 30 post-HSCT or at the time of presentation with symptomatic acute GvHD. Dual TCR T cells were measured in peripheral blood by pair-wise staining with 3 commercially-available and 2 novel TCRa mAbs. Dual TCR T cells were consistently and significantly expanded in patients with symptomatic aGvHD, representing 5.3±3.8 % of peripheral T cells, compared to 1.7±0.8 % of T cells in healthy controls (p < 0.005) (Figure 1). There was no correlation between dual TCR T cell frequency and GvHD severity. Furthermore, sequential analysis of peripheral blood in 2 patients demonstrated expansion of dual TCR T cells concurrent with the development of aGvHD (Figure 2). Dual TCR T cells from patients with symptomatic aGvHD demonstrated increased expression of CD69 as compared to T cells expressing a single TCR, indicative of preferential activation of dual TCR T cells during aGvHD. Similarly, dual TCR T cells isolated from patients with symptomatic aGvHD demonstrate increased production of IFN-g ex vivo, indicative of the ability to mediate pathogenic alloreactive responses. Dual TCR T cell clones isolated from healthy donors and patients post-HSCT by single cell FACS sorting demonstrate alloreactive responses against a range of allogeneic cell lines in vitro. We propose that the increased alloreactivity of dual TCR T cells results from the less stringent thymic selection for secondary TCR, and thus provides a link between thymic selection, the TCR repertoire, and alloreactivity. These findings may lead to simple ways of phenotypically identifying specific T cells predisposed to inducing aGvHD for subsequent examination of T cell repertoires and functional studies. Furthermore, these data suggest that dual TCR T cells represent a potential predictive biomarker for aGvHD and a potential target for selective T cell depletion in HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4015-4015
Author(s):  
Atsushi Satake ◽  
Norifumi Sawamukai ◽  
Taku Kambayashi

Abstract Abstract 4015 FoxP3+ regulatory T cells (Tregs) suppress graft-versus-host disease (GVHD) while preserving graft-versus-tumor effects, making them an attractive target for GVHD therapy. The donor-derived Treg pool can potentially be derived from expansion of pre-existing natural Tregs (nTregs) or from de novo generation of inducible Tregs (iTregs) from donor conventional T cells (Tconvs) in the transplant recipient. Although the co-adoptive transfer of nTregs or in vitro -derived iTregs has been shown to prevent the development of GVHD, the relative contribution of these two Treg subsets in protection against GVHD has been unclear. To investigate the contribution of the different FoxP3+ Treg subsets, we used a MHC-mismatched mouse model of acute GVHD. Lethally irradiated (500cGy × 2) B6D2F1.SJL (H-2bxd) host mice were injected with T cell-depleted bone marrow cells and FACS-sorted Tconvs (WT or Foxp3-deficient) with or without FACS-sorted Tregs of C57BL/6 (H-2b) mouse origin. Weight loss in mice receiving Foxp3-deficient Tconvs alone was significantly more pronounced compared to other groups. The presence of either donor-derived nTregs or iTregs alone protected against GVHD-induced weight loss but was suboptimal compared to the presence of both donor-derived nTregs and iTregs. Next, we sought to determine how the donor-derived Treg pool was established during acute GVHD and tracked the appearance of Tregs in the secondary lymphoid organs at different time points post transplant. On Day 8 post GVHD induction, ∼5% of the donor-derived CD4+ T cells in the spleen were FoxP3+. We found that the Treg pool was comprised equally of donor-derived nTregs and iTregs. Unexpectedly, we found a significant fraction of CD8+FoxP3+ T cells (1–3% of all CD8+ T cells) in the spleen and in the lymph nodes. These CD8+FoxP3+ T cells representing ∼70% of the iTreg pool on Day 8 post GVHD induction. These CD8+FoxP3+ T cells shared phenotypic markers with their CD4+ counterparts and displayed suppressive activity, suggesting that they were bona fide iTregs. Both CD4+ and CD8+ Tregs expanded in vivo with IL-2 treatment and required IL-2 and TGFβ receptor expression for their generation. In summary, we found that donor derived-iTregs are generated during GVHD and contribute to suppression of acute GVHD induced-weight loss. Surprisingly, CD8+Foxp3+T cells were a major contributor to the donor derived-iTreg pool after transplantation. The generation of CD8+ and CD4+ iTregs occurred at least in part by a cell autonomous IL-2 and TGFβ receptor-dependent mechanism. Thus, our data suggest that in addition to increasing nTregs, concomitant strategies aimed at enhancing the conversion of donor-derived Tconvs to iTregs for example by engaging the IL-2 and TGFβ signaling pathways might be beneficial for the treatment of GVHD. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 22 (3) ◽  
pp. S393 ◽  
Author(s):  
Grégory Ehx ◽  
Gilles Fransolet ◽  
Laurence de Leval ◽  
Stéphanie D'Hondt ◽  
Sophie Lucas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document