Determination of the Role and Mechanism of the Transcription Factor NF-Y in Murine Hematopoietic Stem Cell Biology.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2234-2234 ◽  
Author(s):  
Gerd Bungartz ◽  
Stephen G. Emerson

Abstract Previous studies from our and other laboratories have demonstrated that the trimeric transcription factor NF-Y is a potent inducer of many of the genes implicated in hematopoietic stem cell (HSC) self-renewal, suggesting that NF-Y functions as a dominant regulator of genes controlling the balance between self-renewal and differentiation of stem cells. Furthermore, over-expression of NF-Ya, the regulatory subunit of NF-Y, was shown to increase HSC potency in vivo through increased expression of a whole series of genes playing central roles in stem cell function including HoxB4 and Notch-1. The importance of the NF-Y transcription factor for mammalian development is further highlighted by a study demonstrating that a loss of function mutation of NF-Ya in mice, leads to lethality before day E8.5 (Bhattarcharya A. et al. 2003). Therefore, it can be reasoned that the NF-Y transcription factor might act as a master gene among the network of genes involved in early development regulating self-renewal and differentiation of (hematopoietic) stem cells. A concept in cancer biology, well-established in chronic myelogenous leukemia (CML), is that a rare population of cancer stem cells (CSSs) exists that is capable of extensive self-renewal, while most tumor cells have a limited proliferative capacity. Many studies suggest that the similar behavior of HSCs and CSSs are due to similar, yet not identical, molecular mechanisms determining whether a stem cell self-renews or differentiates. Knowledge about the regulatory mechanisms underlying cellular NF-Y abundance and activity and thereby NF-Y-mediated fate decision of SCs would open an elegant way to manipulate SCs, including leukemic stem cells (LSC), for therapeutic use. In this study, we have determined NFYa to have an essential role in murine HSC biology. To circumvent embryonic lethality, we generated bone marrow (BM) chimeric mice in which the deletion of functional NF-Ya can be induced selectively in the hematopoietic system. The analysis of lineage committed cells of the BM, spleen and thymus ten weeks after the disruption of the NF-Ya gene revealed an essential role for NF-Y activity in the hematopoietic system. Furthermore, BM cells from wild type, heterozygous and NF-Ya mutant BM chimera were subjected to colony formation assays, clearly demonstrating the indispensability of NF-Y function for hematopoietic stem and precursor cells. At that time not a single colony deficient for NF-Ya could be found, highlighting the absolute necessity of NF-Y activity for HPCs and HSCs. To explain these deleterious defects mechanistically, the role of NF-Y in regulating potential target genes that in turn control hematopoietic stem cell behavior is comprehensively addressed. Our approach is to ectopically express these downstream genes, such as HoxB4, Notch-1, Bmi-1 and Lef-1 in vivo and subsequently delete NF-Y activity. The results from these assays reveal information about the mechanistic interplay and the position within different pathways of these proteins in HSC behavior. Since the loss of NF-Y has lethal consequences for normal HSCs we are currently testing the effects of NF-Y deletion on LSCs in vivo using an established mouse model for CML. If LSCs and normal HSCs share a common machinery of fate-regulation, it is expected that NF-Ya is essential for LSC survival. If it turns out though, that LSCs and HSCs can be discriminated upon their dependence on NF-Y activity, this would harbor tremendous therapeutic possibilities with medical relevance extending into cancer therapy.

2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2340-2342 ◽  
Author(s):  
Stéphane J. C. Mancini ◽  
Ned Mantei ◽  
Alexis Dumortier ◽  
Ueli Suter ◽  
H. Robson MacDonald ◽  
...  

AbstractJagged1-mediated Notch signaling has been suggested to be critically involved in hematopoietic stem cell (HSC) self-renewal. Unexpectedly, we report here that inducible Cre-loxP–mediated inactivation of the Jagged1 gene in bone marrow progenitors and/or bone marrow (BM) stromal cells does not impair HSC self-renewal or differentiation in all blood lineages. Mice with simultaneous inactivation of Jagged1 and Notch1 in the BM compartment survived normally following a 5FU-based in vivo challenge. In addition, Notch1-deficient HSCs were able to reconstitute mice with inactivated Jagged1 in the BM stroma even under competitive conditions. In contrast to earlier reports, these data exclude an essential role for Jagged1-mediated Notch signaling during hematopoiesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 396-396
Author(s):  
Stephane Barakat ◽  
Julie Lambert ◽  
Guy Sauvageau ◽  
Trang Hoang

Abstract Abstract 396 Hematopoietic stem cells that provide short term reconstitution (ST-HSCs) as well as hematopoietic progenitors expand from a small population of long term hematopoietic stem cells (LT-HSCs) that are mostly dormant cells. The mechanisms underlying this expansion remain to be clarified. SCL (stem cell leukemia), is a bHLH transcription factor that controls HSC quiescence and long term competence. Using a proteomics approach to identify components of the SCL complex in erythroid cells, we and others recently showed that the ETO2 co-repressor limits the activity of the SCL complex via direct interaction with the E2A transcription factor. ETO2/CBF2T3 is highly homologous to ETO/CBFA2T1 and both are translocation partners for AML1. We took several approaches to identify ETO2 function in HSCs. We initially found by Q-PCR that ETO2 is highly expressed in populations of cells enriched in short-term HSC (CD34+Flt3-Kit+Sca+Lin-) and lympho-myeloid progenitors (CD34+Flt3+Kit+Sca+Lin-) and at lower levels in LT-HSCs (CD34-Kit+Sca+Lin- or CD150+CD48-Kit+Sca+Lin-). Next, the role of ETO2 was studied by overexpression or downregulation combined with transplantation in mice. Ectopic ETO2 expression induces a 100 fold expansion of LT-HSCs in vivo in transplanted mice associated with differentiation blockade in all lineages, suggesting that ETO2 overexpression overcomes the mechanisms that limit HSC expansion in vivo. We are currently testing the role of the NHR1 domain of ETO2 in this expansion. Conversely, shRNAs directed against ETO2 knock down ET02 levels in Kit+Sca+Lin- cells, causing a ten-fold decrease in this population after transplantation, associated with reduced short-term reconstitution in mice. Finally, proliferation assays using Hoechst and CFSE indicate that ETO2 downregulation affects cell division (CFSE) and leads to an accumulation of Kit+Sca+Lin-cells in G0/G1 state (Hoescht). In conclusion, we show that ETO2 is highly expressed in ST-HSCs and lymphoid progenitors, and controls their expansion by regulating cell cycle entry at the G1-S checkpoint. In addition, ETO2 overexpression converts the self-renewal of maintenance into self-renewal of expansion in LT-HSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 572-572
Author(s):  
Hitoshi Takizawa ◽  
Chandra S Boddupalli ◽  
Roland R Regoes ◽  
Sebastian Bonhoeffer ◽  
Markus G Manz

Abstract Abstract 572 Life-long blood production is maintained by a small fraction of hematopoietic stem cells (HSCs). Steady-state HSC cycling kinetics have been evaluated by in vivo labeling assays with 5-bromo-2-deoxyuridine (BrdU) (Cheshier et. al., PNAS 1999; Kiel et al., Nature 2007), biotin (Nygren et. al., 2008) and histon 2B-green fluorescent protein (H2B-GFP) transgenic mouse models (Wilson et. al., 2008; Foudi et. al., 2009). While the former studies showed that all HSCs equally divide and likely contribute to blood formation (clonal maintenance), the latter suggested that some HSCs divide frequently and contribute to blood formation until cell death or full differentiation, while some HSCs are quiescent and then get activated to follow the same fate as frequently dividing ones (clonal succession). However, due to low resolution, none of the labeling techniques used were able to track single cell divisions. Furthermore, methods used might have direct influence on cycling activity of HSCs. Thus it remains to be determined a) if HSC divide continuously, sequentially or repetitively and contribute to steady-state hematopoiesis, b) what is a relationship between divisional history and repopulating ability, and c) how self-renewal and differentiation capacity of HSC is impacted by naturally-occurring severe hematopoietic challenges as infections. To address this directly, we set up a high resolution non-invasive in vivo HSC divisional tracking assay with CFSE (carboxyfluorescein diacetate succinimidyl ester). We here show that i.v. transfer of CFSE-labeled HSCs into non-conditioned congenic recipient mice allows evaluation of steady-state HSC cycling-dynamics as CFSE is equally distributed to daughter cells upon cellular division. Transfer of Lin-c-kit+Sca-1+ cells (LKS) into non-irradiated mice revealed non- and 1–7x divided LKS in recipient bone marrow over 20 weeks. To test in vivo limiting dilution and single cell HSC potential, non- or ≥5x divided cells were sorted based on divisional history from primary recipients at different weeks after transplantation, and transplanted into lethally irradiated secondary recipients. Single non-divided LKS at 3 weeks post primary transfer was able to multi-lineage repopulate 24% of recipients long-term, while 50 of ≥5x divided LKS did not engraft. Interestingly, both non- and ≥5x divided LKS at 7 or 12–14 weeks after primary transfer engrafted and showed fluctuating contribution to multi-lineage hematopoiesis over serial transplantation. Mathematical modeling based on limiting dilution transplantation, revealed no evidence for a dichotomy of biologically defined HSCs in different groups. Instead, steady-state serial transplantation with temporary fast-cycling cells revealed that they can slow down over time, suggesting dynamically changing cycling activity of HSC. We next tested the effects of hemato-immunological challenge on HSC proliferation. Mice transplanted with CFSE-labeled LKS cells were repetitively treated with LPS. Analysis 8 days after final LPS injection, i.e. three weeks after steady-state transplantation revealed that all LKS entered cell cycle and the number of ≥5x divided LKS was increased. Secondary transplantation showed that 2–4 time and ≥5x divided LKS from LPS-treated mice reconstituted multi-lineage hematopoiesis whereas both fractions from control mice failed to engraft. This data clearly indicate that HSCs are activated from quiescence upon LPS challenge and provide evidence, that naturally-occurring hemato-immunological challenges, such as gram-negative bacterial infection induces proliferation and self-renewal of HSCs. Our data suggest in contrast to previously proposed concepts, a novel “dynamic repetition” model for HSC cycling activity and blood formation where some HSCs participate in hematopoiesis for a while, subsequently enter a resting phase and get reactivated again to contribute to blood formation in repetitive cycles, leading to homogenous total divisional history of all HSCs at end of life. These findings might represent a biological principle that could hold true for other somatic stem cell-sustained organ-systems and might have developed during evolution to ensure equal distribution of work-load, efficient recruitment of stem cells during demand, and reduction of risk to acquire genetic alterations or fatal damage to the whole HSC population at any given time. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1274-1274
Author(s):  
Elizabeth Csaszar ◽  
Daniel Kirouac ◽  
Mei Yu ◽  
Caryn Ito ◽  
Peter W. Zandstra

Abstract Abstract 1274 Clinical outcomes of hematopoietic stem cell (HSC) transplantation are correlated with infused progenitor cell dose. Limited cell numbers in a typical umbilical cord blood (UCB) unit restricts the therapeutic potential of UCB and motivates ex vivo expansion of these cells. Strategies to grow HSCs have relied on the supplement of molecules acting directly on the stem cell population; however, in all cases, sustained HSC growth is limited by the concurrent growth of more mature cells and their endogenously produced inhibitory signaling factors. Despite increasing evidence for the important role of intercellular (between cell) communication networks, the identity and impact of non-stem cell autonomous feedback signaling remains poorly understood. Simultaneous kinetic tracking of more than 30 secreted factors produced during UCB culture, including TGF-b1, MIP-1b, and MCP-1, in combination with computational simulations of cell population dynamics, enabled us to develop a global control strategy predicted to reduce inhibitory paracrine signaling and, consequently, increase HSC self-renewal. By maintaining endogenously produced ligands at specified levels using a tuneable fed-batch (automated media dilution) strategy, we achieved significant improvements in expansions of total cell numbers (∼180-fold), CD34+ cells (∼80-fold), and NOD/SCID/IL-2Rgc-null (NSG) repopulating cells (∼11-fold, detected at limiting dilution). The fed-batch strategy has been integrated into an automated bioreactor, allowing for the generation of a clinically-relevant cell product after 12 days of culture, with minimal user manipulation. As this strategy targets the HSC environment and not the stem cells directly, it has the ability to act in combination with other expansion strategies to produce synergistic results. Unexpectedly, supplementation of the soluble protein, TAT-HOXB4, to the system, yielded the expected boost in progenitor expansion only in “sub-optimal” control conditions but not in the fed-batch system. Hypothesizing that the efficacy of HOXB4 may be dependent on the skewing of supportive vs. non-supportive cell populations, and the consequent impact of paracrine ligand production, we performed kinetic tracking of 20 hematopoietic cell types during several supportive (fed-batch, HOXB4 supplemented, Notch ligand Delta1 supplemented) vs. non-supportive (control) cultures. Meta analysis of these data revealed a non-autonomous link between HOXB4, increased megakaryocyte production, and stem cell proliferation, as well as between Notch delta-1 ligand, decreased myeloid cell production, and a decrease in the growth inhibition of stem cells. These predictions have been experimentally validated using co-cultures of sorted purified HSCs and CD41+ megakaryocykes and CD14+ monocytes. Our results identify complex connections between mature cell lineages and stem cell fate decisions and we expect to report a direct link between cell-cell interactions emerging from culture manipulations and the resulting impact on HSC self-renewal. Collectively, these studies support a dominant role for non-stem cell autonomous feedback signaling in the regulation of HSC self-renewal. Overcoming cell non-autonomous inhibition of HSC self-renewal has allowed for novel strategies to enhance HSC numbers ex vivo, thereby facilitating the production of clinically relevant quantities of stem and progenitor cells and enabling more effective strategies to treat hematologic disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 94-94 ◽  
Author(s):  
Francesca Ficara ◽  
Mark J. Murphy ◽  
Min Lin ◽  
Michael L. Cleary

Abstract Pbx1 is a proto-oncogene that was originally discovered at the site of chromosomal translocations in pediatric acute leukemia. It codes for a homeodomain transcription factor, which is a component of hetero-oligomeric protein complexes that regulate developmental gene expression. Lack of Pbx1 is associated with multiple patterning malformations, defects in organogenesis, and severe fetal anemia, however embryonic lethality has prevented an assessment of its roles in the adult hematopoietic stem cell (HSC) compartment and in lymphoid differentiation. The objective of this study was to characterize the physiological roles for Pbx1 in the hematopoietic system, specifically in the regulation of cell fate decisions involved in the timing and/or extent of postnatal HSC and progenitor proliferation, self-renewal or differentiation capacity. A genetic approach was employed to conditionally inactivate Pbx1 in the hematopoietic compartment in vivo using Cre recombinase expressed under the control of the Tie2 or Mx1 promoters. A crucial role for Pbx1 in the development of the lympho-hematopoietic system was evidenced by reduced size, cell number, and altered architectures of the thymus and spleen in mutant mice. A marked reduction was observed in the bone marrow (BM) pro- and pre-B cell compartment, as well as a striking reduction (up to 10-fold) in common lymphoid progenitors (CLP), suggesting a role for Pbx1 at a critical stage of lymphoid development where acute leukemia likely originates. Accordingly, abnormal T cell development was observed in the thymus. Common myeloid progenitors (CMP) and Lin-cKit+Sca1+ (LKS, enriched in HSCs) cells were also reduced, as well as long-term stem cells (LT-HSCs, reduced 7-fold on average). Assessment of the proliferation status of LT- and ST (short-term)-HSCs, as well as multi-potent progenitors (MPP), revealed that the reduction of the HSC compartment was associated with a higher number of stem cells exiting the G0 phase, thus losing their quiescent state. Strikingly, Pbx1-deficient BM cells failed to engraft in competitive transplants, but were able to reconstitute congenic recipients in the absence of competition, indicating a profound defect of functional HSCs, which nevertheless retained reconstitution potential. Importantly, Pbx1 deficient HSCs progressively disappeared from primary transplant recipients, and were unable to engraft secondary recipients, demonstrating that Pbx1 is crucial for the maintenance of LT-HSC self-renewal. Microarray studies performed on mutant and wt LT- and ST-HSCs, followed by bioinformatics analysis, showed that in the absence of Pbx1 LT-HSCs are characterized by premature expression of a large subset of ST-HSC genes. The up-regulated differentially expressed transcripts are enriched for cell cycle regulatory genes, consistent with the observed increased cycling activity. Notably, more than 8% of the down-regulated genes are related to the Tgf-beta pathway, which serves a major role in maintaining HSC quiescence. Moreover, B-cell specific genes, which are expressed in the wt LT-HSC compartment, are down-regulated in the absence of Pbx1, suggesting that the observed reduction in CLP and B-cell numbers ultimately arose from a stem cell defect in lymphoid priming. We conclude that Pbx1 is at the apex of a transcriptional cascade that controls LT-HSC quiescence and differentiation, thus allowing the maintenance of their self-renewal potential, crucial for the homeostasis of the lympho-hematopoietic system.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1160-1160
Author(s):  
Xiao Yan ◽  
Heather A Himburg ◽  
Phuong L Doan ◽  
Mamle Quarmyne ◽  
Evelyn Tran ◽  
...  

Abstract Elucidation of the mechanisms governing HSC regeneration has been impeded by difficulty in isolating HSCs early following genotoxic injury, such as total body irradiation (TBI). Using multiparametric flow cytometric cell sorting of BM ckit+sca-1+lin- cells coupled with gene expression analysis, we identified growth factor receptor-bound protein 10 (Grb10), a co-receptor which regulates Insulin Receptor/IGF-1 signaling, to be significantly overexpressed by BM KSL cells at the earliest detectable point of regeneration (day +10) following TBI (3.3-fold, p<0.0001). Grb10 is a member of the imprinted gene family which is predominately expressed in the stem cells of a variety of tissues, including embryonic stem cells, bone marrow, skin and muscle. Viral shRNA-mediated knockdown of Grb10 in BM KSL cells caused a significant decrease in KSL cells and colony forming cells (CFCs) detected in 7-day culture (p=0.03 and p=0.002, respectively). Furthermore, mice competitively transplanted with Grb10-deficient HSCs displayed 10-fold lower donor, multilineage hematopoietic cell engraftment than mice transplanted with Grb10-expressing HSCs (p=0.007 for %CD45.1+ donor cells). Secondary competitive repopulation assays confirmed a greater than 10-fold deficit in long-term repopulating capacity in Grb10-deficient KSL cells compared to Grb10-expressing KSL cells (p=0.006 for %CD45.1+ donor cells). In order to determine if Grb10 was necessary for HSC maintenance and normal hematopoiesis in vivo, we generated maternally-derived Grb10-deficient mice. Heterozygous 8 week old Grb10m/+ (1 mutant allele, 1 wild type allele) had 10-fold decreased Grb10 expression in BM lin-cells. BM CFCs and SLAM+ KSL cells were significantly decreased in Grb10m/+ mice compared to Grb10+/+ mice (p=0.006 and p=0.04, respectively). Competitive repopulation assays demonstrated significantly decreased donor hematopoietic cell repopulation in recipient mice transplanted with Grb10m/+ BM cells versus mice transplanted with Grb10+/+ BM cells (p=0.003 for %CD45.1+ donor cells). Mice transplanted with BM cells from homozygous Grb10-/- mice showed a similar decrease in donor-derived hematopoietic repopulation compared to mice transplanted with BM cells from Grb10+/+ mice (p=0.02 at 20 weeks post-transplantation). These results confirmed that Grb10 regulates HSC self-renewal capacity in vivo. To determine whether Grb10 regulates HSC regeneration after myelotoxic injury, we irradiated Grb10m/+ mice with 550cGy TBI, and monitored hematopoietic recovery over time in comparison to Grb10+/+ controls. Interestingly, Grb10m/+ mice displayed accelerated hematopoietic regeneration early following TBI. At day+10 after 550cGy, Grb10m/+ mice contained significantly increased numbers of BM SLAM+ KSL cells (p=0.04) and CFCs (p=0.009), compared to Grb10+/+ littermates. Similarly, mice transplanted with BM cells from irradiated, Grb10m/+ mice displayed 5-fold increased donor hematopoietic repopulation at 20 weeks post-transplantation compared to mice transplanted with BM cells from irradiated, Grb10+/+ mice (p=0.006). These data suggest that Grb10 deficiency accelerates hematopoietic recovery in the early period following myelosuppressive radiation injury. Mechanistically, Grb10-deficiency caused an increase in the percentage of BM KSL cells in G1 and G2/S/M phase of cell cycle compared to Grb10+/+ KSL cells (p=0.003). We also observed significantly increased levels of mTOR activation in Grb10m/+ BM KSL cells compared to Grb10+/+ BM KSL cells (p=0.001 for pS6, p=0.001 for pS6k and p=0.02 for p4EBP1). Furthermore, mTOR inhibition via siRNA-mTOR targeting rescued the defect in BM hematopoietic progenitor content (colony forming cells) in Grb10-deficient BM cells (p<0.0001). Taken together, our results suggest that Grb10 is necessary for HSC maintenance in steady state, while, paradoxically, Grb10 inhibition accelerates HSC regeneration early following injury. Furthermore, our data suggest that Grb10 mediates these effects via regulation of mTOR signaling. Selective modulation of Grb10 signaling has the potential to augment HSC self-renewal in steady state and to accelerate HSC regeneration following myelotoxic injury. Disclosures Himburg: Duke University: Patents & Royalties: Patent Application for use of Pleiotrophin as a hematopoietic stem cell growth factor. Chute:C2 Regenerate: Equity Ownership; Duke University: Patents & Royalties: Application to use PTN as growth factor as hematopoietic stem cell growth factor.


Sign in / Sign up

Export Citation Format

Share Document