Distinct Genetic Aberrations in Molecular Subtypes of Diffuse Large B Cell Lymphoma Detected by Array CGH.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2631-2631
Author(s):  
Georg Lenz ◽  
George W. Wright ◽  
Sandeep Dave ◽  
Wenming Xiao ◽  
John Powell ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category with at least three different molecular subtypes distinguishable by gene expression profiling, termed germinal center B cell-like (GCB) DLBCL, activated B cell-like (ABC) DLBCL, and primary mediastinal B cell lymphoma (PMBL). We performed array comparative genomic hybridization (aCGH) in patient samples and cell lines representing different DLBCL subtypes to determine if they utilize distinct pathogenetic mechanisms. Using an array consisting of 386, 165 oligonucleotides (NimbleGen), we performed aCGH on 203 untreated de novo DLBCL samples and 30 DLBCL cell lines, and the same samples were profiled for gene expression using Affymetrix U133 plus arrays. Patient samples included 72 GCB DLBCLs, 74 ABC DLBCLs, 31 PMBLs, and 26 unclassified DLBCLs. Following segmentation of the aCGH data into intervals with a uniform copy number, segments were combined into minimal common regions (MCRs) that were recurrently altered in more than one sample. Statistical differences in MCR frequency between DLBCL subtypes were corrected for multiple hypothesis testing using a false discovery rate (FDR) calculation. The DLBCL subtypes differed in the frequency of MCRs residing at many chromosomal loci, and we used gene expression data to define potential target genes in these MCRs. The INK4a/ARF tumor suppressor locus on 9p21 was selectively lost in ABC DLBCL: homozygous deletions of INK4a/ARF was observed in 20% of ABC DLBCLs but in only 3% of GCB DLBCLs and never in PMBLs (FDR=4.5 E-3). Among ABC DLBCLs, loss of INK4a/ARF was associated with increased proliferation rate, as measured by a proliferation gene expression signature, and adverse survival (p=0.007, log rank test). 16% of ABC DLBCL cases had gain/amplification and overexpression of SPIB, a gene on 19q13 encoding an ETS family transcription factor that is characteristically expressed in ABC DLBCL. This copy number alteration was observed much less frequently in GCB DLBCL (3%) and never in PMBL (FDR=2.6 E-2). GCB DLBCLs had recurrent amplification and overexpression of C13orf25, which encodes the mir-17-92 polycistronic cluster of microRNAs that is transcriptionally activated by c-myc and cooperates with c-myc to accelerate tumor development. C13orf25 amplification was detected in 16% of GCB DLBCLs but in only 3% of PMBLs and never in ABC DLBCL (FDR=3.8 E-3). Recurrent amplification and overexpression of JAK2 on 9p24 was observed in 35% of PMBL cases, but only in 5% of GCB DLBCLs and 4% of ABC DLBCLs respectively (FDR=6.2 E-4). In summary, aCGH revealed copy number abnormalities in DLBCL that had strikingly different frequencies in the three DLBCL subtypes, supporting the hypothesis that these subtypes represent distinct diseases that utilize different oncogenic mechanisms. Our analysis specifically implicated the INK4a/ARF locus as a tumor suppressor and SPIB as an oncogene in ABC DLBCL, the mir-17-92 microRNA cluster as an oncogene in GCB DLBCL, and JAK2 as an oncogene in PMBL.

2019 ◽  
Vol 2 (4) ◽  
pp. 246-258
Author(s):  
Prashanthi Dharanipragada ◽  
Nita Parekh

Abstract Diffuse large B-cell lymphoma (DLBCL) is the aggressive form of haematological malignancies with relapse/refractory in ~ 40% of cases. It mostly develops due to accumulation of various genetic and epigenetic variations that contribute to its aggressiveness. Though large-scale structural alterations have been reported in DLBCL, their functional role in pathogenesis and as potential targets for therapy is not yet well understood. In this study we performed detection and analysis of copy number variations (CNVs) in 11 human DLBCL cell lines (4 activated B-cell–like [ABC] and 7 germinal-centre B-cell–like [GCB]), that serve as model systems for DLBCL cancer cell biology. Significant heterogeneity observed in CNV profiles of these cell lines and poor prognosis associated with ABC subtype indicates the importance of individualized screening for diagnostic and prognostic targets. Functional analysis of key cancer genes exhibiting copy alterations across the cell lines revealed activation/disruption of ten potentially targetable immuno-oncogenic pathways. Genome guided in silico therapy that putatively target these pathways is elucidated. Based on our analysis, five CNV-genes associated with worst survival prognosis are proposed as potential prognostic markers of DLBCL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3946-3946
Author(s):  
Cristina Gomez-Abad ◽  
Helena Pisonero ◽  
Juan F Leal ◽  
Giovanna Roncador ◽  
Jose A. Martinez-Climent ◽  
...  

Abstract Abstract 3946 Poster Board III-882 INTRODUCTION The Pim kinases are a family of serine/threonine kinases composed by three members: Pim1, Pim2 and Pim3, involved in the phosphorylation and regulation of several proteins that are essential for cell cycle progression, metabolism or apoptosis (BAD, p21, p27KIP, AKT, Mdm2 and cMyc, among them). Overexpression, translocation or amplification of Pim family have been described in many human cancers, including B-cell Non Hodgkin's Lymphoma, Multiple Myeloma, Prostate cancer and Pancreatic cancer. In addition, 50% of patients diagnosed with diffuse large B-cell Lymphoma (DLBCL) present somatic mutations in Pim1. Despite of its important role in cancer progression, very few chemical inhibitors have been described in the literature, being effective all of them in the high micromolar range. PURPOSE Validating PIM as a rational therapeutic target in B-cell lymphoma, developing tools for patient stratification and pharmacodynamic studies on PIM inhibition. MATERIAL AND METHODS Gene expression profiling and Copy Number data were obtained from a series of 94 B-cell Non-Hodgkin Lymphoma patients (DLBCL, FL, MALT, MCL and NMZL). The effect of Pim inhibition was checked on cell lines by using a novel specific inhibitor for the Pim family (ETP-39010). Newly produced antibodies and RT-PCR primers and protocols were standarized. RESULTS Gene expression data revealed high Pim isoforms expression in a subset of patients with Mantle cell lymphoma (MCL), and Diffuse Large B-cell lymphoma (DLBLC)-ABC type. CGH analysis focused on chromosomal regions containing Pim family and its main regulatory upstream pathway (JAK/STAT) was performed. Heterozygous gains of Pim1 (6p21.2) and Pim3 (22q13.33) were identified in 13.6% of DLBCL patients and in 4.2% of MCL. Alterations in JAK/STAT pathway were also detected in 59.1% of DLBCL patients, and 37.5% of MCL patients presented any alteration in JAK/STAT pathway, being frequent losses of JAK2 chromosomal region. Analysis of additional pathways involved in the up-stream regulation of Pim family disclosed heterozygous gains of PIK3C3 in 40.9% of DLBCL patients, and gains of PIK3CA in 45.9% of MCL patients. Lymphoma cell lines (15) derived from both MCL (9) and ABC-DLBLC (6) subtype, have been analyzed by qRT-PCR and Western-blot, showing variable expression levels of Pim1, Pim2 and Pim3. IC50 obtained for the ETP-39010 compound is in the low micromolar range for the MCL (0.7-8.7 micromolar) and DLBCL-ABC (0.8-10.3 micromolar) cell lines. Since Pim kinase family phosphorilate multiple sites of Bad and AKT, we have checked the inhibition of its phosphorilation as molecular biomarkers for the ETP-39010 effect. Our data show an inhibition of at least 20% of pBad (S112) and almost a complete inhibition of pAKT (S473) 4h after treatment. In addition, cell cycle arrest at G1 and induction of apoptosis were observed 24h after the treatment. CONCLUSION Pim family genes are a rational therapeutic target in MCL and DLBCL-ABC lymphoma subtypes. Stratification and pharmacodynamic markers have been developed for PIM inhibition using a novel specific inhibitor compound -ETP-39010-. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3002-3002
Author(s):  
Charles H. Lawrie ◽  
Shamit Soneji ◽  
Christopher D. Cooper ◽  
Chris Hatton

Abstract MicroRNAs (miRNA) are a recently discovered class of short non-coding RNA molecules that negatively regulate gene expression. They have been shown to play a critical role in many biological functions. In humans about 320 miRNAs have been identified, some of which are expressed in a cell-specific and developmental stage-specific manner. Recently it has been shown that the expression profile of miRNAs can be used to subtype clinical cases (and cell lines) according to diagnosis with a greater degree of accuracy than traditional gene expression analysis. The identity of miRNAs associated with different lymphoma types however remains poorly defined. Previous expression studies have revealed the presence of at least two subtypes of diffuse large B-cell lymphoma (DLBCL) representing the postulated cell of origin; those that are germinal center B cell derived (GCB-type) and those that are activated B-cell derived (ABC-type). The latter subtype has been linked with poor prognostic outcome. It is not known whether these subtypes are also defined at the miRNA level. Therefore we examined the miRNA expression profile of DLBCL cell lines of defined subtypes as well as sub-populations of B-lymphocytes by microarray analysis. Consistent with recent publications, we found that mir-19a, 19b and 17-5p (part of mir-17-92 cluster) were up-regulated in cell lines but not in normal lymphocyte populations. Furthermore, cluster analysis showed that GCB-type cell lines (SUD-HL4, SUD-HL6 & SUD-HL10) have a distinct miRNA profile from ABC-type cell lines (OCI-Ly3 & OCI-Ly10). Most notably, high levels of expression of mir-155, mir-181b and mir-325 were found in ABC-type cell lines whilst high levels of mir-181a were found in GCB-type cell lines. We looked at expression of mir-155, 181a, 143, 145, 378 and 16 in these cell lines as well as clinical cases of DLBCL by RNase-protection assay. Consistent with the microarray data, we found that mir-155 was expressed in ABC-type cell lines but not GCB-type cell lines whilst the converse was true for mir-181a. Clinical cases showed similar patterns of expression but have still to be sub-typed according to immunohistochemical markers. Although still preliminary, our data suggests that miRNA profiling may be a useful tool in predicting the subtype of DLBCL cases and hence clinical outcome.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3733-3733 ◽  
Author(s):  
Jennifer E Amengual ◽  
Matko Kalac ◽  
Luigi Scotto ◽  
Patrick A Sleckman ◽  
Enrica Marchi ◽  
...  

Abstract Abstract 3733 Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's Lymphoma. Despite advances in treatment, 1/3 of patients die from their disease. Gene expression profiling has delineated three subtypes with different genetic features known to be prognostic: the Activated B-cell (ABC), Germinal Center (GC), and grey zone types. For example, ABC DLBCL is addicted to NFkB over-expression. The oncogene, BCL6, encodes a transcription factor that functions as a transcriptional repressor within normal germinal center B-cells. Constitutive activation of Bcl-6 leads to GC-type DLBCL by turning off genes expressing cell cycle dependent kinase inhibitors, and essential tumor suppressor genes, like p53. There is a critical inverse relationship between Bcl-6 and p53, the functional status of which is linked to each transcription factor's degree of acetylation. Deacetylation of Bcl-6 is required for maintaining its effects as a transcriptional repressor. Conversely, acetylation of p53 is activating when class III histone deacetylases (HDAC), also known as sirtuins, are inhibited by drugs such as niacinamide. HDAC inhibitors are presently approved for T-cell lymphoma and may require the targeting of additional pathways to be effective in B-cell lymphomas. Trichostatin A and niacinamide modulate Bcl-6 in lymphoma cell lines. One therapeutic strategy that could favorably shift the relationship between oncogenes and tumor suppressors is the pharmacologic modification of Bcl-6 and p53 using HDAC inhibitors. Eight DLBCL cell lines were screened (4 ABC: Su-DHL2, HBL-1, OCI-Ly10, RIVA; 4 GC:OCI-Ly1, OCI-Ly7, Su-DHL6, Su-DHL4) with four class I/II HDAC inhibitors (romidepsin, vorinostat, panobinostat and belinostat) in combination with niacinamide (sirtuin inhibitor) at two dose levels each at three time points. Cell growth inhibition was measured by luminescence cell viability and apoptosis flow cytometry assays. Synergy was measured by the relative risk ratio (RRR) calculation where values <1 represent synergy. Synergy was achieved in significantly greater number and intensity in the GC versus ABC cell lines. Specifically, romidepsin in combination with niacinamide achieved the greatest synergy. To analyze mechanism of action, DLBCL cell lines were treated with combinations of class I/II HDAC inhibitors and niacinamide. Cells of both GC and ABC subtypes treated with the combination resulted in increased acetylation of p53, and increased p21 and BLIMP-1 content compared to controls. These results did not correlate with cytotoxicity as the ABC cell lines did not achieve the same synergy as the GC cells. GC cells treated with the same combinations resulted in acetylation of Bcl-6 compared with controls as measured by immunoprecipitation and Western blotting assays; ABC cells do not express Bcl-6. This finding correlated with cytotoxicity implying that a rational second pathway must be targeted to shift the balance between oncogene and tumor suppressor activity to achieve effective cell kill. p300 content was also increased suggesting that treatment with HDAC inhibitors recruit or upregulate its production and activity leading to increased acetylation. Using a novel double transgenic mouse model of aggressive spontaneous B-cell lymphoma (l-myc overexpressing crossed with CD19-tagged mCherry luciferase), in vivo effects of the drug combination were studied. These mice express equal basal amounts of Bcl-6 and p53 as GC cell lines. Mice treated with niacinamide 20 mg/kg and romidepsin 2.3mg/kg IP for 5 hours achieved increased acetylation of Bcl-6 and p53, and accumulation of p21 and BLIMP1 compared with controls. Importantly, mice treated with the combination of niacinamide 40 mg/kg and romidepsin 2.3 mg/kg IP achieved decreased tumor burden as measured by bioluminescence signal intensity compared to mice treated with each drug alone and controls. Presently, we are translating these concepts and observations in a proof-of-principle phase I trial evaluating the safety of vorinostat plus niacinamide in lymphoid malignancies. By targeting the specific pathogenetic features of DLBCL, it may be possible to tailor future treatment platforms for discrete subtypes of DLBCL. Disclosures: Off Label Use: The drugs evaluated are not approved for use in DLBCL. O'Connor:Celgene: Consultancy, Research Funding; Merck: Research Funding; Novartis: Research Funding; Spectrum: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2253-2253 ◽  
Author(s):  
Silvia L Locatelli ◽  
Roberto Papait ◽  
Giuseppa Careddu ◽  
Ada Koschorke ◽  
Giuliano G Stirparo ◽  
...  

Abstract INTRODUCTION: Lenalidomide monotherapy exerts clinical activity in relapsed/refractory Diffuse Large B-cell Lymphoma (DLBCL) with better response rate and progression-free survival being recorded in activated B-cell-like (ABC) rather than germinal center B-cell-like (GCB)-DLBCL. Reasons for such a difference are likely due to different expression of key molecules involved in mediating activity of Lenalidomide, such as Interferon regulatory factor 4(IRF4) and cereblon (CRBN). Evidences supporting the key role of DNA methylation and histone modifications in regulating genome stability and gene expression in DLBCL prompted us to investigate the capacity of Azacytidine in modulating Lenalidomide activity, thereby sensitizing GCB-DLBCL to Lenalidomide and enhancing Lenalidomide efficacy in ABC-DLBCL. METHODS: DLBCL cell lines with ABC (U-2932, RIVA) or GCB (SU-DHL4, SU-DHL6) genotype were used to investigate the effects of Lenalidomide and Azacytidine on cell growth and cell death. Western blotting (WB) and immunofluorescence analysis were used to assess modulating effects of the two-drug combination on molecular determinants of Lenalidomide activity. Additionally, we studied CRBN, IRF4 and CRBN binding proteins expression, such as Ikaros and Aiolos (IKZF1 and IKZF3) by real time polymerase chain reaction (RT-PCR) in response to drug treatment. RESULTS: Graded concentrations of Lenalidomide (0.1-100 µM) inhibited cell proliferation by 20% to 40% and increased cell death up to 30% to 40% in ABC-DLBCL cell lines, whereas had minimal effects on GCB-DLBCL cell lines. Untreated ABC-DLBCL but not GCB-DLBCL consistently showed a high expression of CRBN and IRF4. Upon Lenalidomide treatment (3 days) CRBN was significantly upregulated and IRF4 downregulated in ABC-DLBCL, but not GCB-DLBCL cells. Since DNA methylation regulates gene expression in DLBCL cell lines, we next examined whether Azacytdine could modulate CRBN and IRF4 expression and in turn enhance responsiveness to Lenalidomide. Exposure of both ABC- and GCB-DLBCL cell lines to Azacytidine (up to 72 hours) induced a marked increase of CRBN and IRF4 transcripts; addition of Lenalidomide strongly increased Azacytidine-induced increase of CRBN and significantly downregulated IRF4 expression; the combined treatment induced a marked downregulation of Ikaros and Aiolos protein levels. At the cellular level, the concomitant Azacytidine (10 μM)/Lenalidomide (10 μM) treatment inhibited in a synergistic manner the mean (±SEM) cell growth of both ABC-DLBCL (Lena: -16 ± 4%; AZA: -22 ± 2%; AZA/Lena: -70 ± 1%, P<0.001) and GCB-DLBCL (Lena: -17 ± 3%; AZA: -40 ± 4%; AZA/Lena: -82 ± 2%, P<0.001). Additionally, the two drug exposure was associated with a 3-fold decrease of S phase cells(Lena: 28 ± 2%; AZA: 22 ± 0.8%; AZA/Lena: 9 ± 1%, P<0.001); a marked p21 overexpression, and a 3- to 4-fold cell death increase (P<0.001) in both ABC- and GCB-DLBCL. CONCLUSIONS: Our results indicate that Azacytidine sensitizes GCB-DLBCL to the cytotoxic effects of Lenalidomide and enhances Lenalidomide efficacy against ABC-DLBCL resulting in synergistic anti-proliferative and pro-apoptotic effects in both ABC- and GCB-DLBCL cell lines. Cytotoxicity of the two drug combination is mediated by signaling events involving CRBN upregulation and IRF4 downregulation leading to CRBN-binding proteins downregulation. Azacytidine-dependent activation of CRBN and IRF4 expression allow to hypothesize a methylation-driven regulation of these genes. These results might provide a rationale for clinical studies using Azacytidine and Lenalidomide combination in ABC- and GCB-DLBCL. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Zhixing Kuang ◽  
Xun Li ◽  
Rongqiang Liu ◽  
Shaoxing Chen ◽  
Jiannan Tu

BackgroundCachexia is defined as an involuntary decrease in body weight, which can increase the risk of death in cancer patients and reduce the quality of life. Cachexia-inducing factors (CIFs) have been reported in colorectal cancer and pancreatic adenocarcinoma, but their value in diffuse large B-cell lymphoma (DLBCL) requires further genetic research.MethodsWe used gene expression data from Gene Expression Omnibus to evaluate the expression landscape of 25 known CIFs in DLBCL patients and compared them with normal lymphoma tissues from two cohorts [GSE56315 (n = 88) and GSE12195 (n = 136)]. The mutational status of CIFs were also evaluated in The Cancer Genome Atlas database. Based on the expression profiles of 25 CIFs, a single exploratory dataset which was merged by the datasets of GSE10846 (n = 420) and GSE31312 (n = 498) were divided into two molecular subtypes by using the method of consensus clustering. Immune microenvironment between different subtypes were assessed via single-sample gene set enrichment analysis and the CIBERSORT algorithm. The treatment response of commonly used chemotherapeutic drugs was predicted and gene set variation analysis was utilized to reveal the divergence in activated pathways for distinct subtypes. A risk signature was derived by univariate Cox regression and LASSO regression in the merged dataset (n = 882), and two independent cohorts [GSE87371 (n = 221) and GSE32918 (n = 244)] were used for validation, respectively.ResultsClustering analysis with CIFs further divided the cases into two molecular subtypes (cluster A and cluster B) associated with distinct prognosis, immunological landscape, chemosensitivity, and biological process. A risk-prognostic signature based on CCL2, CSF2, IL15, IL17A, IL4, TGFA, and TNFSF10 for DLBCL was developed, and significant differences in overall survival analysis were found between the low- and high-risk groups in the training dataset and another two independent validation datasets. Multivariate regression showed that the risk signature was an independently prognostic factor in contrast to other clinical characteristics.ConclusionThis study demonstrated that CIFs further contribute to the observed heterogeneity of DLBCL, and molecular classification and a risk signature based on CIFs are both promising tools for prognostic stratification, which may provide important clues for precision medicine and tumor-targeted therapy.


Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6069-6076 ◽  
Author(s):  
Kieron Dunleavy ◽  
Stefania Pittaluga ◽  
Myron S. Czuczman ◽  
Sandeep S. Dave ◽  
George Wright ◽  
...  

Abstract Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed distinct molecular subtypes that include germinal center B cell–like (GCB) and activated B cell–like (ABC) DLBCL. ABC DLBCL has a worse survival after upfront chemotherapy and is characterized by constitutive activation of the antiapoptotic nuclear factor–kappa B (NF-κB) pathway, which can inhibit chemotherapy. We hypothesized that inhibition of NF-κB might sensitize ABC but not GCB DLBCL to chemotherapy and improve outcome. As the proteasome inhibitor bortezomib can inhibit NF-κB through blocking IκBα degradation, we investigated bortezomib alone followed by bortezomib and doxorubicin-based chemotherapy in recurrent DLBCL. Tumor tissue was analyzed by gene expression profiling and/or immunohistochemistry to identify molecular DLBCL subtypes. As a control, we showed that relapsed/refractory ABC and GCB DLBCL have equally poor survivals after upfront chemotherapy. Bortezomib alone had no activity in DLBCL, but when combined with chemotherapy, it demonstrated a significantly higher response (83% vs 13%; P < .001) and median overall survival (10.8 vs 3.4 months; P = .003) in ABC compared with GCB DLBCL, respectively. These results suggest bortezomib enhances the activity of chemotherapy in ABC but not GCB DLBCL, and provide a rational therapeutic approach based on genetically distinct DLBCL subtypes. This trial is registered with http://www.ClinicalTrials.gov under identifier NCT00057902.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Selin Merdan ◽  
Kritika Subramanian ◽  
Turgay Ayer ◽  
Johan Van Weyenbergh ◽  
Andres Chang ◽  
...  

AbstractThe clinical risk stratification of diffuse large B-cell lymphoma (DLBCL) relies on the International Prognostic Index (IPI) for the identification of high-risk disease. Recent studies suggest that the immune microenvironment plays a role in treatment response prediction and survival in DLBCL. This study developed a risk prediction model and evaluated the model’s biological implications in association with the estimated profiles of immune infiltration. Gene-expression profiling of 718 patients with DLBCL was done, for which RNA sequencing data and clinical covariates were obtained from Reddy et al. (2017). Using unsupervised and supervised machine learning methods to identify survival-associated gene signatures, a multivariable model of survival was constructed. Tumor-infiltrating immune cell compositions were enumerated using CIBERSORT deconvolution analysis. A four gene-signature-based score was developed that separated patients into high- and low-risk groups. The combination of the gene-expression-based score with the IPI improved the discrimination on the validation and complete sets. The gene signatures were successfully validated with the deconvolution output. Correlating the deconvolution findings with the gene signatures and risk score, CD8+ T-cells and naïve CD4+ T-cells were associated with favorable prognosis. By analyzing the gene-expression data with a systematic approach, a risk prediction model that outperforms the existing risk assessment methods was developed and validated.


Sign in / Sign up

Export Citation Format

Share Document