Impact of Organic Anion Transporter 3 (OAT3) on Bendamustine Uptake of Lymphoma Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4184-4184
Author(s):  
Yohannes Hagos ◽  
Gerald G. Wulf ◽  
Vladimir Shnitsar ◽  
Philip Hundertmark ◽  
Shvangi Gupta ◽  
...  

Abstract One main problem of tumor therapy is the resistance of malignant cells to cytostatics due to high expression of efflux transporters. Whereas the role of these efflux transporters for tumor cell resistance is well established, little is known about uptake transporters, which may increase the sensibility of tumor cells for cytostatics. In the present study we addressed the interaction of cytostatics established for the treatment of lymphoma, namely melphalan, chlorambucil or bendamustine with human Organic Anion Transporter (OATs), which belong to the Solute carrier (SLC) gene family. We selected these cytostatics, because they show structural similarity to p-aminohyppurate (PAH), the model substrate of OATs. OATs are mainly expressed in the kidney, where they are responsible for the excretion of endogenous and exogenous organic anions like urate or various drugs e.g. diuretics. Initially, we examined the cis-inhibitory effect of melphalan, chlorambucil and bendamustine on OAT1-mediated [3H]PAH uptake as well as OAT3- and OAT4- mediated [3H]estrone sulfate uptake in HEK293 cells, which were stably transfected with these transporters. Melphalan did not show any significant inhibitory effect on all tested OATs. 100 μM chlorambucil reduced OAT1-, OAT3- and OAT4-mediated uptake of PAH or estrone sulfate down to 14.6 ± 0.17%, 16.3 ± 4.0% and 66.0 ± 1.4%, respectively. 100 μM bendamustine inhibited only OAT3-mediated estrone sulfate uptake up to 91.9 ± 0.5% compared to control cells. OAT1- or OAT4- facilitated transport of PAH and estrone sulfate remained unchanged by bendamustine, suggesting that bendamustine interacts exclusively with OAT3. To determine the affinity of OAT3 for bendamustine and chlorambucil, we performed concentration dependent inhibition of OAT3-mediated estrone sulfate uptake and calculated the Ki values for both cytostatics. Dixon-Plot evaluation confirmed a competitive inhibition of OAT3 by bendamustine as well as chlorambucil. The results demonstrated higher affinity of OAT3 for bendamustine with a Ki value of 2.7 μM than for chlorambucil, showing a Ki value of 38.2 μM. To elucidate the expression of OATs in lymphoma cell lines, we performed RT-PCR experiments. Our data demonstrate high expression of OAT3 in all cell lines compared to lymphocytes isolated from a normal person. No expression of OAT1 and OAT4 was observed any lymphoma cell lines. The expression of OAT3 in B-cell lymphoma cell lines Karpas, Raji, SudHL4 and T-cell lymphoma cell lines L428, Jurkat and Hut78 was quantified by real time PCR. The highest expression of OAT3 was observed in the order Jurkat>Hut78>SudHL4>L428>Raji>Karpas. The expression of OAT3 was confirmed by real time PCR in four patients with chronic lymphocytic leukamia. OAT3- dependent cytostatic effects of bendamustine was examined by [3H] thymidine incorporation. 30 min incubation of OAT3-expressing HEK293 cells with 10, 50 or 100 μM bendamustine significantly reduced the proliferation of transfected versus non-transfected cells. We conclude that the molecular background for the cytostatic efficiency of bendamustine in lymphoma cells is due to 1) the expression of OAT3 in lymphoma cells and 2) a the high affinity of OAT3 for bendamustine.

2015 ◽  
Vol 308 (4) ◽  
pp. F330-F338 ◽  
Author(s):  
Yohannes Hagos ◽  
Philip Hundertmark ◽  
Volodymyr Shnitsar ◽  
Venkata V. V. R. Marada ◽  
Gerald Wulf ◽  
...  

Chronic lymphatic leukemia (CLL) is often associated with nephritic syndrome. Effective treatment of CLL by chlorambucil and bendamustine leads to the restoration of renal function. In this contribution, we sought to elucidate the impact of organic anion transporters (OATs) on the uptake of bendamustine and chlorambucil as a probable reason for the superior efficacy of bendamustine over chlorambucil in the treatment of CLL. We examined the effects of structural analogs of p-aminohippurate (PAH), melphalan, chlorambucil, and bendamustine, on OAT1-mediated [3H]PAH uptake and OAT3- and OAT4-mediated [3H]estrone sulfate (ES) uptake in stably transfected human embryonic kidney-293 cells. Melphalan had no significant inhibitory effect on any OAT, whereas chlorambucil reduced OAT1-, OAT3-, and OAT4-mediated uptake of PAH or ES down to 14.6%, 16.3%, and 66.0% of control, respectively. Bendamustine inhibited only OAT3-mediated ES uptake, which was reduced down to 14.3% of control cells, suggesting that it interacts exclusively with OAT3. The IC50 value for OAT3 was calculated to be 0.8 μM. Real-time PCR experiments demonstrated a high expression of OAT3 in lymphoma cell lines as well as primary CLL cells. OAT3-mediated accumulation of bendamustine was associated with reduced cell proliferation and an increased rate of apoptosis. We conclude that the high efficacy of bendamustine in treating CLL might be partly contributed to the expression of OAT3 in lymphoma cells and the high affinity of bendamustine for this transporter.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Chenchang Liu ◽  
Jinghui Zhang ◽  
Guofeng You

Human organic anion transporter 4 (hOAT4) belongs to a family of multispecific organic anion transporters that play critical roles in the disposition of numerous drugs and therefore are the major sites for drug-drug interaction. Drug-drug interactions contribute significantly to the individual variation in drug response. hOAT4 is expressed in the kidney and placenta. In the current study, we examined the interaction of 36 anticancer drugs with hOAT4 in kidney COS-7 cells and placenta BeWo cells. Among the drugs tested, only epirubicin hydrochloride and dabrafenib mesylate exhibited > 50% cis-inhibitory effect, in COS-7 cells, on hOAT4-mediated uptake of estrone sulfate, a prototypical substrate for the transporter. The IC50values for epirubicin hydrochloride and dabrafenib mesylate were 5.24±0.95μM and 8.30±3.30μM, respectively. Dixon plot analysis revealed that inhibition by epirubicin hydrochloride was noncompetitive with aKi= 3μM whereas inhibition by dabrafenib mesylate was competitive with aKi= 4.26μM. Our results established that epirubicin hydrochloride and dabrafenib mesylate are inhibitors of hOAT4. Furthermore, by comparing our data with clinically relevant exposures of these drugs, we conclude that although the tendency for dabrafenib mesylate to cause drug-drug interaction through hOAT4 is insignificant in the kidney, the propensity for epirubicin hydrochloride to cause drug-drug interaction is high.


2013 ◽  
Vol 304 (4) ◽  
pp. F403-F409 ◽  
Author(s):  
Yohannes Hagos ◽  
Gerhard Burckhardt ◽  
Birgitta C. Burckhardt

Due to their clearance function, the kidneys are exposed to high concentrations of oxidants and potentially toxic substances. To maintain cellular integrity, renal cells have to be protected by sufficient concentrations of the antioxidant glutathione (GSH). We tested whether GSH or its precursors are taken up by human organic anion transporters 1 (OAT1) and 3 (OAT3) stably expressed in HEK293 cells. GSH did not inhibit uptake of p-aminohippurate (PAH) or of estrone sulfate (ES) in OAT3-transfected HEK293 cells. In OAT1-transfected cells, GSH reduced the uptake of PAH marginally. Among the GSH constituent amino acids, glutamate, cysteine, and glycine, only glutamate inhibited OAT1, but labeled glutamate was not taken up by a probenecid-inhibitable transport system. Thus OAT1 binds glutamate but is unable to translocate it. The GSH precursor dipeptide, cysteinyl glycine (cysgly), and the glutamate derivative N-acetyl glutamate (NAG), inhibited uptake of PAH when present in the medium and trans-stimulated uptake of PAH from the intracellular side, indicating that they are hitherto unrecognized transported substrates of OAT1. N-acetyl aspartate weakly interacted with OAT1, but aspartate did not. NAG inhibited also OAT3, albeit with much lower affinity compared with OAT1, and glutamate did not interact with OAT3 at all. Taken together, human OAT3 and OAT1 cannot be involved in renal GSH extraction from the blood. However, OAT1 could support intracellular GSH synthesis by taking up cysteinyl glycine.


2007 ◽  
Vol 293 (1) ◽  
pp. G271-G278 ◽  
Author(s):  
Chitrawina Mahagita ◽  
Steven M. Grassl ◽  
Pawinee Piyachaturawat ◽  
Nazzareno Ballatori

Organic anion transporting polypeptides (OATP/ SLCO) are generally believed to function as electroneutral anion exchangers, but direct evidence for this contention has only been provided for one member of this large family of genes, rat Oatp1a1/Oatp1 ( Slco1a1). In contrast, a recent study has indicated that human OATP1B3/OATP-8 ( SLCO1B3) functions as a GSH-bile acid cotransporter. The present study examined the transport mechanism and possible GSH requirement of the two members of this protein family that are expressed in relatively high levels in the human liver, OATP1B3/OATP-8 and OATP1B1/OATP-C ( SLCO1B1). Uptake of taurocholate in Xenopus laevis oocytes expressing either OATP1B1/OATP-C, OATP1B3/OATP-8, or polymorphic forms of OATP1B3/OATP-8 (namely, S112A and/or M233I) was cis-inhibited by taurocholate and estrone sulfate but was unaffected by GSH. Likewise, taurocholate and estrone sulfate transport were trans-stimulated by estrone sulfate and taurocholate but were unaffected by GSH. OATP1B3/OATP-8 also did not mediate GSH efflux or GSH-taurocholate cotransport out of cells, indicating that GSH is not required for transport activity. In addition, estrone sulfate uptake in oocytes microinjected with OATP1B3/OATP-8 or OATP1B1/OATP-C cRNA was unaffected by depolarization of the membrane potential or by changes in pH, suggesting an electroneutral transport mechanism. Overall, these results indicate that OATP1B3/OATP-8 and OATP1B1/OATP-C most likely function as bidirectional facilitated diffusion transporters and that GSH is not a substrate or activator of their transport activity.


2018 ◽  
Vol 46 (03) ◽  
pp. 585-599 ◽  
Author(s):  
Tianqiao Yong ◽  
Shaodan Chen ◽  
Yizhen Xie ◽  
Diling Chen ◽  
Jiyan Su ◽  
...  

Ethanol and water extracts of Armillaria mellea were prepared by directly soaking A. mellea in ethanol (AME) at 65[Formula: see text]C, followed by decocting the remains in water (AMW) at 85[Formula: see text]C. Significantly, AME and AMW at 30, 60 and 120[Formula: see text]mg/kg exhibited excellent hypouricemic actions, causing remarkable declines from hyperuricemic control (351[Formula: see text][Formula: see text]mol/L, [Formula: see text]) to 136, 130 and 115[Formula: see text][Formula: see text]mol/L and 250, 188 and 152[Formula: see text][Formula: see text]mol/L in serum uric acid, correspondingly. In contrast to the evident renal toxicity of allopurinol, these preparations showed little impacts. Moreover, they showed some inhibitory effect on XOD (xanthine oxidase) activity. Compared with hyperuricemic control, protein expressions of OAT1 (organic anion transporter 1) were significantly elevated in AME- and AMW-treated mice. The levels of GLUT9 (glucose transporter 9) expression were significantly decreased by AMW. CNT2 (concentrative nucleoside transporter 2), a key target for purine absorption in gastrointestinal tract was involved in this study, and was verified for its innovative role. Both AME and AMW down-regulated CNT2 proteins in the gastrointestinal tract in hyperuricemic mice. As they exhibited considerable inhibitory effects on XOD, we selected XOD as the target for virtual screening by using molecular docking, and four compounds were hit with high ranks. From the analysis, we concluded that hydrogen bond, Pi–Pi and Pi-sigma interactions might play important roles for their orientations and locations in XOD inhibition.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3333 ◽  
Author(s):  
Hang Lu ◽  
Zhiqiang Lu ◽  
Xue Li ◽  
Gentao Li ◽  
Yilin Qiao ◽  
...  

BackgroundHerb-drug interactions (HDIs) resulting from concomitant use of herbal products with clinical drugs may cause adverse reactions. Organic anion transporter 1 (OAT1) and 3 (OAT3) are highly expressed in the kidney and play a key role in the renal elimination of substrate drugs. So far, little is known about the herbal extracts that could modulate OAT1 and OAT3 activities.MethodsHEK293 cells stably expressing human OAT1 (HEK-OAT1) and OAT3 (HEK-OAT3) were established and characterized. One hundred seventy-two extracts from 37 medicinal and economic plants were prepared. An initial concentration of 5 µg/ml for each extract was used to evaluate their effects on 6-carboxylfluorescein (6-CF) uptake in HEK-OAT1 and HEK-OAT3 cells. Concentration-dependent inhibition studies were conducted for those extracts with more than 50% inhibition to OAT1 and OAT3. The extract ofJuncus effusus, a well-known traditional Chinese medicine, was assessed for its effect on thein vivopharmacokinetic parameters of furosemide, a diuretic drug which is a known substrate of both OAT1 and OAT3.ResultsMore than 30% of the plant extracts at the concentration of 5 µg/ml showed strong inhibitory effect on the 6-CF uptake mediated by OAT1 (61 extracts) and OAT3 (55 extracts). Among them, three extracts for OAT1 and fourteen extracts for OAT3 were identified as strong inhibitors with IC50values being <5 µg/ml.Juncus effususshowed a strong inhibition to OAT3in vitro, and markedly altered thein vivopharmacokinetic parameters of furosemide in rats.ConclusionThe present study identified the potential interactions of medicinal and economic plants with human OAT1 and OAT3, which is helpful to predict and to avoid potential OAT1- and OAT3-mediated HDIs.


Pharmacology ◽  
2018 ◽  
Vol 101 (3-4) ◽  
pp. 176-183 ◽  
Author(s):  
Yugo Hamada ◽  
Kenji Ikemura ◽  
Takuya Iwamoto ◽  
Masahiro Okuda

Lansoprazole, a proton pump inhibitor, potently inhibits human organic anion transporter, hOAT3 (SLC22A8). Lansoprazole has an asymmetric atom in its structure and is clinically administered as a racemic mixture of (R)-and (S)-enantiomers. However, little is known about the stereoselective inhibitory potencies of lansoprazole against hOAT3 and its homolog, hOAT1. In the present study, the stereoselective inhibitory effect of lansoprazole was evaluated using hOAT1-and hOAT3-expressing cultured cells. hOAT1 and hOAT3 transported [14C]p-aminohippurate and [3H]estrone-3-sulfate (ES) with Michaelis-Menten constants of 29.8 ± 4.0 and 30.1 ± 9.0 µmol/L respectively. Lansoprazole enantiomers inhibited hOAT1- and hOAT3-mediated transport of each substrate in a concentration-dependent manner. The IC50 value of (S)-lansoprazole against hOAT3-mediated transport of [3H]ES (0.61 ± 0.08 µmol/L) was significantly lower than that of (R)-lansoprazole (1.75 ± 0.31 µmol/L). In contrast, stereoselectivity was not demonstrated for the inhibition of hOAT1. Furthermore, (S)-lansoprazole inhibited hOAT3-mediated transport of pemetrexed and methotrexate (hOAT3 substrates) more strongly than the corresponding (R)-lansoprazole. This study is the first to demonstrate that the stereoselective inhibitory potency of (S)-lansoprazole against hOAT3 is greater than that of (R)-lansoprazole. The present findings provide novel information about the drug interactions associated with lansoprazole.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 390 ◽  
Author(s):  
Irina E. Antonescu ◽  
Maria Karlgren ◽  
Maria L. Pedersen ◽  
Ivailo Simoff ◽  
Christel A. S. Bergström ◽  
...  

Acamprosate is an anionic drug substance widely used in treating symptoms of alcohol withdrawal. It was recently shown that oral acamprosate absorption is likely due to paracellular transport. In contrast, little is known about the eliminating mechanism clearing acamprosate from the blood in the kidneys, despite the fact that studies have shown renal secretion of acamprosate. The hypothesis of the present study was therefore that renal organic anion transporters (OATs) facilitate the renal excretion of acamprosate in humans. The aim of the present study was to establish and apply OAT1 (gene product of SLC22A6) and OAT3 (gene product of SLC22A8) expressing cell lines to investigate whether acamprosate is a substrate or inhibitor of OAT1 and/or OAT3. The studies were performed in HEK293-Flp-In cells stably transfected with SLC22A6 or SLC22A8. Protein and functional data showed that the established cell lines are useful for studying OAT1- and OAT3-mediated transport in bi-laboratory studies. Acamprosate inhibited OAT1-mediated p-aminohippuric acid (PAH) uptake but did not inhibit substrate uptake via OAT3 expressing cells, neither when applied concomitantly nor after a 3 h preincubation with acamprosate. The uptake of PAH via OAT1 was inhibited in a competitive manner by acamprosate and cellular uptake studies showed that acamprosate is a substrate for OAT1 with a Km-value of approximately 700 µM. Probenecid inhibited OAT1-mediated acamprosate uptake with a Ki-value of approximately 13 µM, which may translate into an estimated clinically significant DDI index. In conclusion, acamprosate was identified as a substrate of OAT1 but not OAT3.


Sign in / Sign up

Export Citation Format

Share Document