Compared to Adult Peripheral Blood T Cells, Cord Blood T Cells Show Enhanced Immunological Recognition of Chronic Lymphocytic Leukemia Tumor Cells.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2333-2333
Author(s):  
Alan G. Ramsay ◽  
Dong-Xia Xing ◽  
William K. Decker ◽  
Jared K. Burks ◽  
William G. Wierda ◽  
...  

Abstract Following allogeneic stem cell transplantation (SCT) and donor lymphocyte infusion (DLI) from adult peripheral blood (APB), chronic lymphocytic leukemia (CLL) cells are good targets of a graft-versus-leukemia effect. However, some patients eligible for this treatment do not have a suitable allogeneic donor and CLL B cells have been shown to be dysfunctional antigen-presenting cells (APCs) for allogeneic APB T cells. As a result, allogeneic APB T cells show suppressed immunological synapse formation with CLL cells. Umbilical cord blood (CB) is a promising source of hematopoietic cells for allogeneic transplantation and can be obtained from matched unrelated donors with greater tolerance for incompletely HLA-matched recipients. Moreover, we have successfully expanded CB T cells ex vivo (anti-CD3/CD28 beads and rIL-2) using a protocol that retains a naïve and diverse immune population including central memory cells. In this present study we used confocal microscopy to visualize F-actin polymerization to assess immunological synapse formation of CB T cells compared to APB T cells with CLL B cells with and without superantigen as APCs. Our results identify the ability of unexpanded and expanded CB CD4 and CD8 T cells to form F-actin immune synapses with CLL B cells and of note, CB was more effective than unexpanded or expanded APB T cells (p<0.05). Of interest, the expansion protocol maintained immune synapse formation with a trend towards increased F-actin polymerization. As control, we examined the ability of unexpanded and expanded T cells to form F-actin synapses with allogeneic healthy B cells with or without superantigen as APCs and found no significant difference between CB and APB as a source of T cells. Our results demonstrate that CB T cells have an enhanced ability to recognize CLL B cells as allogeneic APCs compared to APB T cells and provide important and exciting pre-clinical data for the potential use of expanded CB T cells in the setting of CB transplantation in CLL.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 338-338 ◽  
Author(s):  
Alan G. Ramsay ◽  
Abigail M. Lee ◽  
John G. Gribben

Abstract Cancer is associated with immune deficiency, but the molecular basis for this is poorly defined. We have previously demonstrated that multiple gene expression abnormalities are induced in patients with chronic lymphocytic leukemia (CLL) including defects within the actin cytoskeleton formation pathways. Based on this data, we hypothesized that failure of actin polymerization would result in defects in the formation of the immunological synapse (IS) which is critical for T cell activation and effector function. To assess this, actin polymerization at the IS in T cells in response to superantigen-pulsed B cells (APCs) was visualized using confocal microscopy. We observed significantly reduced ability to polymerize actin at the IS (> 50% reduction) in autologous CD4 and CD8 T cells from previously untreated CLL patients compared to age-matched healthy donors (p<0.05). Since reduced IS formation could result from defects in T cells, APCs or both, we examined IS formation in mixing experiments using T cells or APCs from leukemic patients with healthy allogeneic cells. These experiments demonstrated impaired IS formation using T cells from patients with CLL (p<0.01) or CLL cells as APCs (p<0.01), in keeping with defects in both T cells and APC function of CLL cells. We further postulated that interaction of CLL cells with healthy T cells would induce similar changes. Healthy allogeneic T cells were co-cultured for 48 hours with either allogeneic CLL cells or healthy B cells. Co-culture with CLL cells resulted in subsequent significant impairment in IS formation of the T cells with healthy superantigen pulsed APCs (p<0.01). Blocking experiments using anti-LFA-1 and anti-ICAM1 monoclonal antibodies with CLL B cells prevented subsequent actin remodelling impairment at the IS in the healthy allogeneic donor T cells. Further evidence that direct cell contact with CLL cells and not soluble factors is required to induce this T cell immune defect was provided by the finding that there was no impairment on IS formation when the T cells were co-cultured with CLL cells in transwell culture assays. The finding that direct contact of CLL cells with allogeneic T cells induces impairment in IS formation is relevant for the use of donor lymphocyte infusions in the setting of bulk disease. Co-localization experiments assessed by confocal microscopy suggest that the molecular basis for the defective T cells function stems from inability in T cells from CLL patients to recruit key proteins to the IS efficiently compared to healthy donor T cells. Greater than 50% reduction in co-localization at the IS was seen for dynamin 2, filamin A and LFA-1 integrin (p<0.05). These assays provide a rapid and simple method to assess T cell impairment in cancer and can be used to determine if steps to attempt to improve defective T cell function in cancer are successful. The finding of impaired IS formation as a key T cell defect in these cancer bearing patients has implications for both autologous and allogeneic immunotherapy approaches and identify both IS formation and the molecules regulating its organisation as potential functional markers and targets for the reversal of immune deficiency in cancer.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1794-1794 ◽  
Author(s):  
Dongxia Xing ◽  
Alan G. Ramsay ◽  
Simon Robinson ◽  
Catherine M. Bollard ◽  
Nina Shah ◽  
...  

Abstract Abstract 1794 Immune dysfunction is a hallmark of chronic lymphocytic leukemia (CLL) including suppressed humoral and cell-mediated immune responses. The immunomodulatory agent lenalidomide has shown effective clinical activity against CLL, but its mechanism of action is poorly understood. Previous work has demonstrated that the T cell immunological synapse and functional defects in CLL can be reversed following lenalidomide treatment (J Clin Invest. 2008; 118). Polymerization of F-actin at the NK cell immunological synapse with tumor cells is required for signaling molecules to assemble and regulate NK cell activation and effector function. Confocal microscopy was used to visualize and analyze F-actin polymerization at the immune synapse between NK cells and CLL cells. The impaired immune synapse defect identified in CLL could result from not only the defects of CLL B cells but also defects in the CLL NK cells or a combination of both factors. To investigate the contribution of each factor, we examined synapse formation in experiments using CLL B cells with autologous CLL NK cells or healthy allogeneic NK cells. Conjugates formed with healthy NK cells and CLL B cells exhibited a strong band of F-actin at the immune synapse. In contrast, significantly less actin polymerization at the synapse was observed in autologous CLL NK cells and CLL B cells (P < 0.01). These results indicate CLL B cells, together with CLL NK cells contributed to the immune dysfunction in CLL. As autologous NK cell function in CLL is suppressed, we investigated the utility of CB as a potential functional source of NK cells for CLL immunotherapy. We examined the effect of lenalidomide on NK cell immune synapse function with CLL B cells acting as APCs. We demonstrated that ex vivo treatment of CLL cells with lenalidomide (500 ng/ml) for 48 hours caused a significant increase in the ability of autologous CLL NK cells to form F-actin immune synapses with CLL B cells. The same treatment of CLL B cells also significantly increased the ability of CB-NK cells to form F-actin immunological synapses with these treated CLL B cells compared to untreated CLL B cells (33.6% to 67.3%, P < 0.01, n=6). Our results also show that lenalidomide treatment of autologous NK cells from CLL patients enhanced synapse formation with treated CLL cells compared to experiments using untreated NK cells, but with reduced function compared to CB NK cells. Of note, lenalidomide treatment was shown to increase the recruitment of the signaling molecule Lck to NK cell:CLL cell synapse site, that is known to regulate lytic synapse function. Importantly, lenalidomide treatment significantly increased CB-NK killing of CLL B cells compared to untreated CLL B cells (20.5% versus 48.2%, E:T ratio of 10:1, n = 6, p < 0.001). These results provide insight into the potential mechanism of action of lenalidomide's anti-leukemic function – priming CLL tumor cells for enhanced NK cell lytic synapse formation and effector function. In addition, the data suggests that immunotherapeutic strategies utilizing a combination of CB-NK cells and lenalidomide has an enhanced clinical efficacy in CLL. Disclosures: Gribben: Roche: Honoraria; Celgene: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria; Pharmacyclics: Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3886-3886
Author(s):  
Eva Hellqvist ◽  
Christina C.N. Wu ◽  
George F. Widhopf ◽  
Alice Shih ◽  
Rommel Tawatao ◽  
...  

Abstract Abstract 3886 ROR1 is a receptor-tyrosine kinase like protein expressed on the surface of chronic lymphocytic leukemia (CLL) B cells, but not on normal mature B cells, suggesting that it may be a promising therapeutic target. We have generated a chimeric monoclonal antibody (mAb), UC99961, which binds to an intradomain epitope of human ROR1 (hROR1). UC99961 binds the same epitope as the murine anti-hROR1 mAb, UC D10–001, which has direct cytotoxic effects on hROR1 positive CLL cells. In this study we investigated the in-vivo anti-leukemic activity and tolerability of UC99961 on ROR1+ primary patient CLL cells and human cord-blood-derived B cells and T cells, respectively. For these studies, immunodeficient RAG2−/−γc−/− neonatal mice were reconstituted with a human immune system by intrahepatic xenotransplantation of 1×105 CD34+ human cord blood progenitor cells. Eight to ten weeks post transplantation, cord blood engraftment was verified by peripheral blood screening, at which point the mice received an intraperitoneal transplantation of 2×107 primary patient ROR1+ CLL cells. Twenty-four hours after CLL transplantation, five animals per group were each treated with a single intraperitoneal injection (10mg/kg) of UC99961, UC D10–001, or control IgG. Seven days following mAb treatment, the animals were sacrificed and marrow, spleen, thymus, and peritoneal lavage samples were collected and analyzed by flow cytometry for CLL cells, as well as normal cord-blood-derived B cells and T cells. To confirm mAb administration according to the study design, serial residual ROR1 plasma antibody levels were determined by ELISA. Results from three consecutive experiments using leukemia cells from two different patients showed that the vast majority of CLL B cells remained in the peritoneal cavity of the animals and did not migrate to other hematopoietic organs. Both anti-hROR1 mAbs UC99961 and UC D10–001 significantly reduced the average number of harvested CLL cells in the peritoneal lavage compared to control IgG (99% and 71% reduction respectively), while cord-blood-derived T cells (CD45+3+) in thymus remained unaffected by the mAb treatment. For the majority of cord-blood-derived B cells in marrow and spleen, no significant reduction could be observed after UC99961 or UC D10–001 mAb treatment. A small CD19+ROR1+CD34− cord-blood-derived B cell population was identified in marrow and spleen that was reduced after UC99961 and UC D10–001 mAb treatment. This study demonstrates that the anti-human ROR1 specific mAbs have in vivo anti-leukemic activity with minimal impact on human cord-blood-derived B cells and T cells. From these results, UC99961 appears to be an excellent candidate antibody for future clinical studies for patients with CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 767-774 ◽  
Author(s):  
LA Fernandez ◽  
JM MacSween ◽  
GR Langley

Abstract The mechanism of the hypogammaglobulinemia in patients with chronic lymphocytic leukemia (CLL) was studied by determining the generation of specific immunoglobulin-secreting cells in response to mitogen and antigen stimulation in culture. Normal peripheral blood B lymphocytes from 18 normal subjects cocultured with equal numbers of autologous T cells generated cells secreting 2,542 +/- 695 IgG, 2,153 +/- 615 IgA, and 2,918 +/- 945 IgM. Normal B lymphocytes cocultured with normal allogeneic T cells generated similar numbers. However, B lymphocytes from patients with chronic lymphocytic leukemia cocultured with T cells from the same patient generated only 0.5% as many cells secreting IgG and 11% and 23% as many secreting IgA and IgM, respectively. The reason for this markedly defective generation of immunoglobulin-secreting cells was investigated by evaluating T-helper, T-suppressor, and B-cell function using B cells from tonsil and T and B cells from peripheral blood of normal and leukemic individuals. T cells from patients with chronic lymphocytic leukemia provided somewhat greater help than did normal T cells to normal peripheral blood B cells and normal help to tonsil B cells, whether stimulated with mitogen or antigen. T cells from patients with chronic lymphocytic leukemia did not demonstrate increased suppressor function compared to normals with B cells from normal peripheral blood. The hypogammaglobulinemia in these patients therefore was associated with a markedly defective generation of immunoglobulin secreting cells, and as there was normal or increased T- cell helper activity without excessive suppressor activity, it seems likely that this was due to an intrinsic B-cell defect.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3318-3318 ◽  
Author(s):  
Alexander W. MacFarlane ◽  
Mowafaq Jillab ◽  
Mitchell R Smith ◽  
R. Katherine Alpaugh ◽  
Marion E. Cole ◽  
...  

Abstract Background: B-cell chronic lymphocytic leukemia (CLL) is a common blood cancer characterized by high prevalence of malignant B cells in peripheral blood. Small lymphocytic lymphoma (SLL) is considered to be a different presentation of the same disease, with the malignant B cells primarily localized in lymph nodes. Natural killer (NK) cells are innate immune effectors that can spontaneously identify and kill malignant cells, especially hematopoietic cancers. In peripheral blood of CLL patients, NK cells are chronically exposed to significant tumor burden, which is predicted to influence their phenotype and function. Effective NK cell function may be particularly beneficial in CLL patients, since commonly-used monoclonal antibody therapies (e.g. rituximab, alemtuzumab) rely at least partially on ADCC-mediated by NK cells. Methods: We performed a prospective analysis of biomarkers on fresh peripheral blood lymphocytes from 25 untreated CLL patients, 10 untreated SLL and 17 age-matched healthy controls by 10-color flow cytometry. All subjects signed IRB approved informed consent forms. Our study analyzed 180 distinct biomarker parameters, with a particular focus on NK and T cells. Differences in biomarker expression between patients with SLL, CLL, and healthy controls were compared by Wilcoxon rank-sum test. Results: Absolute numbers of NK and T cells per µl of blood were significantly higher in CLL patients, and this correlated with increased B cell numbers. As indicators of immune suppression, the frequency of regulatory T cells was significantly increased in CLL samples, as were levels of PD-1 expression on T cells and CD56dim NK cells. NK cells in CLL expressed higher levels of CD27, which is characteristic of a less mature phenotype, and CD56dim cells expressed lower levels of NKG2D. Compared to healthy controls, CLL samples displayed a marked reduction in degranulation by CD56dim NK cells in response to transformed 721.221 B cells, either with or without rituximab. CD56dim NK cells from CLL patients were also less viable under resting conditions or when challenged with target cells, especially in ADCC responses. We further observed a striking reduction in the frequency and viability of KIR3DL1+ NK cells, which progressed over time in most CLL patients. Surprisingly, CLL patients with the highest levels of PD-1 expression on NK cells possessed genes for both KIR3DL1 and its ligand, HLA-Bw4. Our findings were also clearly evident in a CLL patient compared to her healthy monozygotic twin, thereby providing compelling support for the results in the full patient cohort. The altered expression levels of nearly all of the NK cell biomarkers and degranulation were less pronounced in blood samples from SLL patients, presumably due to low tumor burden in peripheral blood. Conclusions: CLL patients have increased numbers of NK cells in peripheral blood, but these NK cells are less mature, are significantly depleted of the KIR3DL1+ subset, and have deficits in degranulation response, reduced expression of NKG2D activating receptor, increased expression of inhibitory PD-1, and enhanced susceptibility to activation-induced death when challenged with tumor targets and rituxumab. Our findings support the hypothesis that immune dysfunction in CLL may be due in part to a selective loss of mature KIR3DL1+ NK cells, possibly upon encountering overwhelming tumor burden in peripheral blood, and CLL patients may benefit from therapeutic strategies that augment NK cell function. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 767-774 ◽  
Author(s):  
LA Fernandez ◽  
JM MacSween ◽  
GR Langley

The mechanism of the hypogammaglobulinemia in patients with chronic lymphocytic leukemia (CLL) was studied by determining the generation of specific immunoglobulin-secreting cells in response to mitogen and antigen stimulation in culture. Normal peripheral blood B lymphocytes from 18 normal subjects cocultured with equal numbers of autologous T cells generated cells secreting 2,542 +/- 695 IgG, 2,153 +/- 615 IgA, and 2,918 +/- 945 IgM. Normal B lymphocytes cocultured with normal allogeneic T cells generated similar numbers. However, B lymphocytes from patients with chronic lymphocytic leukemia cocultured with T cells from the same patient generated only 0.5% as many cells secreting IgG and 11% and 23% as many secreting IgA and IgM, respectively. The reason for this markedly defective generation of immunoglobulin-secreting cells was investigated by evaluating T-helper, T-suppressor, and B-cell function using B cells from tonsil and T and B cells from peripheral blood of normal and leukemic individuals. T cells from patients with chronic lymphocytic leukemia provided somewhat greater help than did normal T cells to normal peripheral blood B cells and normal help to tonsil B cells, whether stimulated with mitogen or antigen. T cells from patients with chronic lymphocytic leukemia did not demonstrate increased suppressor function compared to normals with B cells from normal peripheral blood. The hypogammaglobulinemia in these patients therefore was associated with a markedly defective generation of immunoglobulin secreting cells, and as there was normal or increased T- cell helper activity without excessive suppressor activity, it seems likely that this was due to an intrinsic B-cell defect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
2012 ◽  
Vol 120 (7) ◽  
pp. 1412-1421 ◽  
Author(s):  
Alan G. Ramsay ◽  
Andrew J. Clear ◽  
Rewas Fatah ◽  
John G. Gribben

Abstract Cancer immune evasion is an emerging hallmark of disease progression. We have demonstrated previously that impaired actin polymerization at the T-cell immunologic synapse is a global immune dysfunction in chronic lymphocytic leukemia (CLL). Direct contact with tumor cells induces defective actin polarization at the synapse in previously healthy T cells, but the molecules mediating this dysfunction were not known. In the present study, we show via functional screening assays that CD200, CD270, CD274, and CD276 are coopted by CLL cells to induce impaired actin synapse formation in both allogeneic and autologous T cells. We also show that inhibitory ligand–induced impairment of T-cell actin dynamics is a common immunosuppressive strategy used by both hematologic (including lymphoma) and solid carcinoma cells. This immunosuppressive signaling targets T-cell Rho-GTPase activation. Of clinical relevance, the immunomodulatory drug lenalidomide prevented the induction of these defects by down-regulating tumor cell–inhibitory molecule expression. These results using human CLL as a model cancer establish a novel evasion mechanism whereby malignant cells exploit multiple inhibitory ligand signaling to down-regulate small GTPases and lytic synapse function in global T-cell populations. These findings should contribute to the design of immunotherapeutic strategies to reverse T-cell tolerance in cancer.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Sign in / Sign up

Export Citation Format

Share Document