Local and Distant Elements Regulate Tissue-Specific Expression of ANK-1 Gene Transcripts

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2432-2432
Author(s):  
Ashley N. Owen ◽  
Karina Laflamme ◽  
Andre M. Pilon ◽  
Lisa J. Garrett ◽  
Patrick G. Gallagher ◽  
...  

Abstract Fewer than 20,000 protein-coding genes in the human genome generate more than 100,000 proteins. This diversity results from the selective use of alternative promoters and alternative mRNA splicing. Ankyrins are multifunctional linker/adapter proteins with isoforms expressed in cell-, tissue-, and developmental stage-specific patterns. The ANK-1 gene, which encodes a series of proteins that connect the red blood cell (RBC) membrane to the RBC skeleton, is an excellent system to study how specific promoters are selected for expression and others suppressed. The human ANK-1 locus has two tissue-specific promoters/first exons (erythroid, 1E; brain/muscle, 1B) and one ubiquitous promoter/first exon (1A). We have previously shown that the ANK-1E promoter sequences are contained in the 300 base pairs (bp) immediately upstream of exon 1E (including a critical GATA-1 binding site) are necessary for erythroid-specific expression in transgenic mice. We have recently reported a novel 9 base consensus sequence ([G/T][G/C][G/C]GGTGAG) located between +7 and +15 that serves as a binding site for the transcription initiation complex. This consensus is present in the other ANK-1 promoters, 30% of all mammalian promoters, and is highly enriched in those that lack known consensus elements (i.e, TATA box; Laflamme et al. submitted). We hypothesized that variation within this consensus sequence controls the level of mRNA transcription. We evaluated altered consensus sequences in the ANK-1E promoter linked to luciferase or gamma-globin reporter genes in transient transfection assays in erythroid K562 cells or transgenic mice, respectively. In both assays, the GCGGGTGAG sequence generated 7-fold higher levels of expression than the wild type sequence (TGCGGTGAG; p<0.01), while other variations gave similar or lower levels of expression. We concluded that while erythroid specificity of the minimal ANK-1E promoter is conferred by GATA-1 binding, the level of expression is controlled by the ([G/T][G/C][G/C]GGTGAG) box. In transient transfection assays in vitro, where the constraints of chromatin are released, the sequences adjacent to ANK-1E and ANK-1A promoters directed equivalent levels of expression in both erythroid and non-erythroid cells. We hypothesized that the activity of the ANK-1E promoter in vivo is controlled by both the core promoter sequence and the local chromatin architecture. Transcriptionally active regions of chromatin show increased sensitivity to DNase I digestion, which we have analyzed across a 200 kb region encompassing all three ANK-1 promoters. A region between the ANK-1E and ANK-1A promoters was sensitive to DNase I digestion only in erythroid cells, while the upstream (1B) and downstream (1A) regions were DNase I resistant. The 1E to 1A region is flanked by DNase hypersensitive sites (HS): one immediately 5′ to 1E (5′HS), and two adjacent HS (3′HS1, 3′HS2) located ~6 kb downstream. Histone acetylation is also associated with active chromatin. Chromatin Immunoprecipitation (ChIP) of the ANK-1E region showed erythroid-specific histone acetylation of the 6kb region between 5′HS and 3′HS1&2, with hyperacetylation at all three HS in all cell types. Barrier elements are found at the boundary between open and condensed chromatin. 5′HS provides a barrier against transgene silencing in cell lines and transgenic mice (p<0.01). 3′HS2 contains barrier activity in transfected cells (p<0.01), while the combination of 3′HS1 and 3′HS2 prevents silencing in transgenic mice (p<0.02). ChIP, EMSA (Mobility Shift Assay) and in vitro DNase I footprinting demonstrated that 3′HS1 binds the erythroid transcription factor NF-E2. In transient assays in erythroid cells, 3′HS1 increased reporter gene activity 5-fold when adjacent to the ANK-1E promoter. We hypothesized that NF-E2 could be translocated to the ANK-1E promoter by the formation of an internal chromatin loop. Chromatin Conformation Capture (3C) demonstrated the formation of a loop structure in which 5′HS and 3′HS1&2 are brought into physical proximity in erythroid, but not non-erythroid cells. In agreement with the 3C results, ChIP demonstrated that both ends of the ANK-1E chromatin loop bind GATA-1, NF-E2 and RNA Pol II. Our current model predicts that the 5′ HS barrier allows the ANK-1E promoter to function in transgenic mice, but in the native locus, ANK-1E promoter activity requires the formation of a chromatin loop mediated by GATA-1 and NF-E2.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 536-536
Author(s):  
Ashley N. Owen ◽  
Tyra Wolfsberg ◽  
Karina Laflamme ◽  
Clara Wong ◽  
Yelena Maksimova ◽  
...  

Abstract Mammals express a variety of erythroid and nonerythroid ankyrin-1 isoforms generated by alternate mRNA splicing and by expression from promoters upstream of 3 known alternate first exons. ANK-1 Exon 1B is located 138 kb 5′ of exon 2 and is expressed only in neuronal and muscle cells. Exon 1E is located 39 kb 5′ of exon 2 and is expressed only in erythroid cells. Exon 1A is located 27 kb 5′ of exon 2 and is expressed in many cell types. We have previously shown that the ANK-1E promoter is flanked by DNase I Hypersensitive Sites (HS), one immediately upstream of the RNA initiation sites (5′HS) and a pair of closely spaced HS 5kb downstream (3′HS1 and 3′HS2). To determine the location of additional HS in the ANK-1 locus, we designed PCR primers spaced ~250 bp apart that span a 200 kb region from exon 2 to 60 kb upstream of Exon 1B for use in a high throughput DNase I HS assay. We identified the HS surrounding Exon 1E, as well as HS that flank Exons 1A and 1B. In both the Exon 1A and Exon 1B promoters, the 5′HS is located immediately upstream of the mRNA initiation sites and the 3′HS is located 4–7 kb downstream. An additional pair of HS were identified 70 kb upstream of exon 2 between the ANK-1B and ANK-1E promoters. This region contains the 5′ ends of at least 5 human ESTs. We used 5′ RACE to show that the homologous region in the mouse is transcribed and splices to exon 2. This putative promoter is designated ANK-1C. All 4 ANK-1 promoters lack consensus promoter sequences involved in the binding of the transcription initiation complex, TFIID, including TATA, InR, DPE or DCE elements. We have recently identified a novel consensus sequence that binds TFIID: (T/G)(G/C)(G/C)GGTGAG. This sequence is present multiple times in all 4 ANK-1 promoters as well as in 22% of >4000 mammalian promoters lacking TFIID-binding consensus sequences, strong evidence of functional significance. To understand the relationship of the flanking HS to the ANK-1 promoters we used the activation of ANK-1E promoter in erythroid cells as a model and have undertaken a molecular dissection of the elements in the ANK-1E region. Using transgenic mice and K562-based assays we have shown that both ANK-1E 5′HS and 3′HS2 are barrier elements that prevent gene silencing. In K562 cells, ANK-1E 3′HS1 increases expression only when located adjacent to the ANK-1E or thymidine kinase promoters (p=0.0009), but not in SY5Y neuronal cells (p=0.35). DNase I footprinting, gel shift, and reporter gene assays demonstrated that 3′HS1 binds the erythroid-specific transcription factor NF-E2. Mutation of the NF-E2 binding site abolished the ability of 3′HS1 to increase gene expression (p=0.08) in K562 cells. Chromatin Conformation Capture (3C) analysis demonstrated the formation of a 5 kb erythroid-specific chromatin loop that brings 5′HS into close proximity with 3′HS1/2. In agreement with the 3C results, Chromatin Immune Precipitation analysis demonstrated a hub in which Brg-1 and CTCF (associated with barrier elements), NF-E2, GATA-1 and RNA Pol II occupy both 5′HS and 3′HS1/2, despite the lack of consensus sites for NF-E2 in 5′HS, or GATA-1 or RNA initiation sites in 3′HS1/2. Our current model is that the formation of the erythroid-specific ANK-1E chromatin loop is mediated by the binding of the erythroid-specific transcription factors GATA-1 to 5′HS and NF-E2 to 3′HS1.


1991 ◽  
Vol 11 (2) ◽  
pp. 1048-1061
Author(s):  
I J Lee ◽  
L Tung ◽  
D A Bumcrot ◽  
E S Weinberg

A protein, denoted UHF-1, was found to bind upstream of the transcriptional start site of both the early and late H4 (EH4 and LH4) histone genes of the sea urchin Strongylocentrotus purpuratus. A nuclear extract from hatching blastulae contained proteins that bind to EH4 and LH4 promoter fragments in a band shift assay and produced sharp DNase I footprints upstream of the EH4 gene (from -133 to -106) and the LH4 gene (from -94 to -66). DNase I footprinting performed in the presence of EH4 and LH4 promoter competitor DNAs indicated that UHF-1 binds more strongly to the EH4 site. A sequence match of 11 of 13 nucleotides was found within the two footprinted regions: [sequence: see text]. Methylation interference and footprinting experiments showed that UHF-1 bound to the two sites somewhat differently. DNA-protein UV cross-linking studies indicated that UHF-1 has an electrophoretic mobility on sodium dodecyl sulfate-acrylamide gels of approximately 85 kDa and suggested that additional proteins, specific to each promoter, bind to each site. In vitro and in vivo assays were used to demonstrate that the UHF-1-binding site is essential for maximal transcription of the H4 genes. Deletion of the EH4 footprinted region resulted in a 3-fold decrease in transcription in a nuclear extract and a 2.6-fold decrease in expression in morulae from templates that had been injected into eggs. In the latter case, deletion of the binding site did not grossly disrupt the temporal program of expression from the injected EH4 genes. LH4 templates containing a 10-bp deletion in the consensus region or base substitutions in the footprinted region were transcribed at 14 to 58% of the level of the wild-type LH4 template. UHF-1 is therefore essential for maximal expression of the early and late H4 genes.


1994 ◽  
Vol 14 (11) ◽  
pp. 7276-7284
Author(s):  
W Zhong ◽  
J Mirkovitch ◽  
J E Darnell

Hepatocyte nuclear factor 4 (HNF-4) is a liver-enriched transcription factor and a member of the steroid hormone receptor superfamily. HNF-4 is required for the hepatoma-specific expression of HNF-1 alpha, another liver-enriched transcription factor, suggesting the early participation of HNF-4 in development. To prepare for further study of HNF-4 in development, the tissue-specific expression of the mouse HNF-4 gene was studied by analyzing the promoter region for required DNA elements. DNase-hypersensitive sites in the gene in liver and kidney tissues were found in regions both distal and proximal to the RNA start that were absent in tissues in which HNF-4 expression did not occur. By use of reporter constructs in transient-transfection assays and with transgenic mice, a region sufficient to drive liver-specific expression of HNF-4 was identified. While an HNF-1 binding site between bp -98 and -68 played an important role in the hepatoma-specific promoter activity of HNF-4 in transient-transfection assays, it was not sufficient for the liver-specific expression of a reporter gene in transgenic mice. Distal enhancer elements indicated by the presence of DNase I-hypersensitive sites at kb -5.5 and -6.5, while not functional in transient-transfection assays, were required for the correct expression of the mouse HNF-4 gene in animals.


1993 ◽  
Vol 13 (1) ◽  
pp. 668-676
Author(s):  
V Lemarchandel ◽  
J Ghysdael ◽  
V Mignotte ◽  
C Rahuel ◽  
P H Roméo

The human glycoprotein IIB (GPIIB) gene is expressed only in megakaryocytes, and its promoter displays cell type specificity. We show that this specificity involved two cis-acting sequences. The first one, located at -55, contains a GATA binding site. Point mutations that abolish protein binding on this site decrease the activity of the GPIIB promoter but do not affect its tissue specificity. The second one, located at -40, contains an Ets consensus sequence, and we show that Ets-1 or Ets-2 protein can interact with this -40 GPIIB sequence. Point mutations that impair Ets binding decrease the activity of the GPIIB promoter to the same extent as do mutations that abolish GATA binding. A GPIIB 40-bp DNA fragment containing the GATA and Ets binding sites can confer activity to a heterologous promoter in megakaryocytic cells. This activity is independent of the GPIIB DNA fragment orientation, and mutations on each binding site result in decreased activity. Using cotransfection assays, we show that c-Ets-1 and human GATA1 can transactive the GPIIB promoter in HeLa cells and can act additively. Northern (RNA) blot analysis indicates that the ets-1 mRNA level is increased during megakaryocyte-induced differentiation of erythrocytic/megakaryocytic cell lines. Gel retardation assays show that the same GATA-Ets association is found in the human GPIIB enhancer and the rat platelet factor 4 promoter, the other two characterized regulatory regions of megakaryocyte-specific genes. These results indicate that GATA and Ets cis-acting sequences are an important determinant of megakaryocytic specific gene expression.


1996 ◽  
Vol 16 (6) ◽  
pp. 2777-2786 ◽  
Author(s):  
V Gailus-Durner ◽  
J Xie ◽  
C Chintamaneni ◽  
A K Vershon

The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.


1998 ◽  
Vol 180 (10) ◽  
pp. 2736-2743 ◽  
Author(s):  
Jianzhong Huang ◽  
Wandee Yindeeyoungyeon ◽  
Ram P. Garg ◽  
Timothy P. Denny ◽  
Mark A. Schell

ABSTRACT Ralstonia (Pseudomonas)solanacearum is a soil-borne phytopathogen that causes a wilting disease of many important crops. It makes large amounts of the exopolysaccharide EPS I, which it requires for efficient colonization, wilting, and killing of plants. Transcription of the epsoperon, encoding biosynthetic enzymes for EPS I, is controlled by a unique and complex sensory network that responds to multiple environmental signals. This network is comprised of the novel transcriptional activator XpsR, three distinct two-component regulatory systems (VsrAD, VsrBC, and PhcSR), and the LysR-type regulator PhcA, which is under the control of PhcSR. Here we show that thexpsR promoter (P xpsR ) is simultaneously controlled by PhcA and VsrD, permitting XpsR to act like a signal integrator, simultaneously coordinating signal input into theeps promoter from both VsrAD and PhcSR. Additionally, we used in vivo expression analysis and in vitro DNA binding assays with substitution and deletion mutants of P xpsR to show the following. (i) PhcA primarily interacts with a typical 14-bp LysR-type consensus sequence around position −77, causing a sixfold activation of P xpsR ; a weaker, less-defined binding site between −183 and −239 likely enhances PhcA binding and activation via the −77 site another twofold. (ii) Full 70-fold activation of P xpsR requires the additional interaction of the VsrD response regulator (or its surrogate) with a 14-bp dyadic sequence centered around −315 where it enhances activation (and possibly binding) by PhcA; however, VsrD alone cannot activate P xpsR . (iii) Increasing the distance between the putative VsrD binding site from that of PhcA by up to 232 bp did not dramatically affect P xpsR activation or regulation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3651-3651
Author(s):  
Olga P. Zoueva ◽  
David Bodine ◽  
Griffin P. Rodgers

Abstract Binding of beta protein 1 (BP1) to its site on the promoter of adult beta-globin gene has silencing effect on beta-globin transcription in vitro. To better understand the mechanism of the negative regulation of beta-globin expression by BP1 we have developed transgenic mice. Specifically, we introduced a mutated BP1 binding site into the promoter of beta-globin gene sequence of 35 kb cosmid construct. This construct containing the micro-LCR and other essential elements of human beta-globin gene cluster was microinjected into the single cell mouse embryos. To detect the differences in developmental regulation of the human beta-globin gene expression in the transgenic mice, we studied the yolk sac derived embryonic blood at embryonic day 10.5 (E10.5) and the fetal liver of mouse embryos at E13.5. In addition, we analyzed adult erythroid cells. To minimize experimental error, samples from individual animals of three transgenic lines were analyzed independently using real-time PCR assays. Levels of expression of murine alpha-globin mRNA were used as internal controls. The BP1 gene and its mouse analog Dlx4 belongs to the Distal-less family of homeobox genes, which are expressed during early development. We found that the mRNA levels of human beta-globin in transgenic mice containing mutated BP1 binding site were higher at all stages of erythroid cells development as compared with control transgenic mice bearing cosmid construct with wild type sequence of BP1 site. Particularly, we detected up to 20-fold increase in human beta-globin expression in embryonic blood at E10.5, 3-fold increase in fetal livers of transgenic mice at E13.5, and up to 1.4-fold increase in adult reticulocytes. We also found that increase in human beta-globin expression was correlated with expression pattern of murine Dlx4 which mRNA was predominantly expressed in embryonic blood at E10.5. Thus, our data indicate that transgenic mice bearing human beta-globin gene with mutated BP1 site have significantly higher human beta-globin transcripts levels in blood cells from primitive erythropoesis than control mice. These results may help develop the novel clinic approaches for the inhibition of the expression of abnormal beta-globin genes, such as sickle (hbs) and hbc.


1998 ◽  
Vol 18 (4) ◽  
pp. 2344-2359 ◽  
Author(s):  
Marc A. Webster ◽  
John N. Hutchinson ◽  
Michael J. Rauh ◽  
Senthil K. Muthuswamy ◽  
Martina Anton ◽  
...  

ABSTRACT Transgenic mice expressing the polyomavirus (PyV) middle T antigen (MT) develop multifocal mammary tumors which frequently metastasize to the lung. The potent transforming activity of PyV MT is correlated with its capacity to activate and associate with a number of signaling molecules, including the Src family tyrosine kinases, the 85-kDa Src homology 2 subunit of the phosphatidylinositol 3′ (PI-3′) kinase, and the Shc adapter protein. To uncover the role of these signaling proteins in MT-mediated mammary tumorigenesis, we have generated transgenic mice that express mutant PyV MT antigens decoupled from either the Shc or the PI-3′ kinase signaling pathway. In contrast to the rapid induction of metastatic mammary tumors observed in the strains expressing wild-type PyV MT, mammary epithelial cell-specific expression of either mutant PyV MT resulted in the induction of extensive mammary epithelial hyperplasias. The mammary epithelial hyperplasias expressing the mutant PyV MT defective in recruiting the PI-3′ kinase were highly apoptotic, suggesting that recruitment of PI-3′ kinase by MT affects cell survival. Whereas the initial phenotypes observed in both strains were global mammary epithelial hyperplasias, focal mammary tumors eventually arose in all female transgenic mice. Genetic and biochemical analyses of tumorigenesis in the transgenic strains expressing the PyV MT mutant lacking the Shc binding site revealed that a proportion of the metastatic tumors arising in these mice displayed evidence of reversion of the mutant Shc binding site. In contrast, no evidence of reversion of the PI-3′ kinase binding site was noted in tumors derived from the strains expressing the PI-3′ kinase binding site MT mutant. Tumor progression in both mutant strains was further correlated with upregulation of the epidermal growth factor receptor family members which are known to couple to the PI-3′ kinase and Shc signaling pathways. Taken together, these observations suggest that PyV MT-mediated tumorigenesis requires activation of both Shc and PI-3′ kinase, which appear to be required for stimulation of cell proliferation and survival signaling pathways, respectively.


1998 ◽  
Vol 180 (16) ◽  
pp. 4080-4088 ◽  
Author(s):  
Shin-Ichi Maeda ◽  
Yuriko Kawaguchi ◽  
Taka-Aki Ohe ◽  
Tatsuo Omata

ABSTRACT There are three binding sites for NtcA (nirI,nirII, and nirIII), the global nitrogen regulator of cyanobacteria, in the DNA region between the two divergently transcribed operons (nirA andnirB operons) involved in nitrate assimilation inSynechococcus sp. strain PCC 7942. Using theluxAB reporter system, we showed that nirI andnirIII, which are located 23 bp upstream from the −10 promoter element of nirA and nirB, respectively, are required for induction by nitrogen depletion of thenirA and nirB operons, respectively. The induction of nirA operon transcription was a prerequisite for the nitrite-responsive positive regulation of the transcription by NtcB, a LysR-type protein. The NtcA-binding sitenirII, located in the middle of the nirA-nirBintergenic region, and a potential binding site for a LysR-type protein (TGCAN5TGCA; designated L1), located betweennirI and nirII, were required for the nitrite-responsive, NtcB-dependent enhancement of nirAoperon transcription. Although the requirement for the L1 site was consistent with the involvement of the LysR family protein NtcB in transcriptional regulation, NtcB did not bind to the nirAregulatory region in vitro in the presence of nitrite and NtcA, suggesting the involvement of some additional factor(s) in the regulation. An L1-like inverted repeat with the consensus sequence TGCN7GCA was conserved in the nirA promoter region of cyanobacteria, being centered at position −23 with respect to the NtcA-binding site corresponding to nirI, which suggested the common occurrence of nitrite-responsive regulation of the nitrate assimilation operon among cyanobacteria.


1998 ◽  
Vol 180 (9) ◽  
pp. 2367-2372 ◽  
Author(s):  
Sudha A. Chugani ◽  
Matthew R. Parsek ◽  
A. M. Chakrabarty

ABSTRACT The catBCA operon of Pseudomonas putidaencodes enzymes involved in the catabolism of benzoate. Transcription of this operon requires the LysR-type transcriptional regulator CatR and an inducer molecule, cis,cis-muconate. Previous gel shift assays and DNase I footprinting have demonstrated that CatR occupies two adjacent sites proximal to thecatBCA promoter in the presence of the inducer. We report the presence of an additional binding site for CatR downstream of thecatBCA promoter within the catB structural gene. This site, called the internal binding site (IBS), extends from +162 to +193 with respect to the catB transcriptional start site and lies within the catB open reading frame. Gel shift analysis and DNase I footprinting determined that CatR binds to this site with low affinity. CatR binds cooperatively with higher affinity to the IBS in the presence of the two upstream binding sites. Parallel in vivo and in vitro studies were conducted to determine the role of the internal binding site. We measured β-galactosidase activity ofcatB-lacZ transcriptional fusions in vivo. Our results suggest a probable cis-acting repressor function for the internal binding site. Site-directed mutagenesis of the IBS verified this finding. The location of the IBS within the catBstructural gene, the cooperativity observed in footprinting studies, and phasing studies suggest that the IBS likely participates in the interaction of CatR with the upstream binding sites by looping out the intervening DNA.


Sign in / Sign up

Export Citation Format

Share Document