scholarly journals Participation of the yeast activator Abf1 in meiosis-specific expression of the HOP1 gene.

1996 ◽  
Vol 16 (6) ◽  
pp. 2777-2786 ◽  
Author(s):  
V Gailus-Durner ◽  
J Xie ◽  
C Chintamaneni ◽  
A K Vershon

The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.

1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485 ◽  
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


1996 ◽  
Vol 313 (3) ◽  
pp. 745-752 ◽  
Author(s):  
Françoise LEVAVASSEUR ◽  
Jocelyne LIÉTARD ◽  
Kohei OGAWA ◽  
Nathalie THÉRET ◽  
Peter D. BURBELO ◽  
...  

Laminin γ1 chain is present in all basement membranes and is expressed at high levels in various diseases, such as hepatic fibrosis. We have identified cis- and trans-acting elements involved in the regulation of this gene in normal rat liver, as well as in hepatocyte primary cultures and hepatoma cell lines. Northern-blot analyses showed that laminin γ1 mRNA was barely detectable in freshly isolated hepatocytes and expressed at high levels in hepatocyte primary cultures, as early as 4 h after liver dissociation. Actinomycin D and cycloheximide treatment in vivo and in vitro indicated that laminin γ1 overexpression in cultured hepatocytes was under the control of transcriptional mechanisms. Transfection of deletion mutants of the 5´ flanking region of murine LAMC1 gene in hepatoma cells that constitutively express laminin γ1 indicated that regulatory elements were located between -594 bp and -94 bp. This segment included GC- and CTC-containing motifs. Gel-shift analyses showed that two complexes were resolved with different affinity for the CTC sequence depending on the location of the GC box. The pattern of complex formation with nuclear factors from freshly isolated and cultured hepatocytes was different from that obtained with total liver and similar to that with hepatoma cells. Southwestern analysis indicated that several polypeptides bound the CTC-rich sequence. Affinity chromatography demonstrated that a Mr 60000 polypeptide was a major protein binding to the CTC motif. This polypeptide is probably involved in the transcriptional activation of various proto-oncogenes and extracellular matrix genes that are expressed at high levels in both hepatoma cells and early hepatocyte cultures.


1989 ◽  
Vol 9 (4) ◽  
pp. 1397-1405 ◽  
Author(s):  
K E Yutzey ◽  
R L Kline ◽  
S F Konieczny

During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2163-2173 ◽  
Author(s):  
Ana Busturia ◽  
Alan Lloyd ◽  
Fernando Bejarano ◽  
Michael Zavortink ◽  
Hua Xin ◽  
...  

Silencing of homeotic gene expression requires the function of cis-regulatory elements known as Polycomb Response Elements (PREs). The MCP silencer element of the Drosophila homeotic gene Abdominal-B has been shown to behave as a PRE and to be required for silencing throughout development. Using deletion analysis and reporter gene assays, we defined a 138 bp sequence within the MCP silencer that is sufficient for silencing of a reporter gene in the imaginal discs. Within the MCP138 fragment, there are four binding sites for the Pleiohomeotic protein (PHO) and two binding sites for the GAGA factor (GAF), encoded by the Trithorax-like gene. PHO and the GAF proteins bind to these sites in vitro. Mutational analysis of PHO and GAF binding sequences indicate that these sites are necessary for silencing in vivo. Moreover, silencing by MCP138 depends on the function of the Trithorax-like gene, and on the function of the PcG genes, including pleiohomeotic. Deletion and mutational analyses show that, individually, either PHO or GAF binding sites retain only weak silencing activity. However, when both PHO and GAF binding sites are present, they achieve strong silencing. We present a model in which robust silencing is achieved by sequential and facilitated binding of PHO and GAF.


1992 ◽  
Vol 12 (11) ◽  
pp. 5024-5032
Author(s):  
R Bassel-Duby ◽  
M D Hernandez ◽  
M A Gonzalez ◽  
J K Krueger ◽  
R S Williams

To define transcriptional control elements responsible for muscle-specific expression of the human myoglobin gene, we performed mutational analysis of upstream sequences (nucleotide positions -373 to +7 relative to the transcriptional start site) linked to a firefly luciferase gene. Transient expression assays in avian and mammalian cells indicated that a CCCACCCCC (CCAC box) sequence (-223 to -204) is necessary for muscle-specific transcription directed either by the native myoglobin promoter or by a heterologous minimal promoter linked to the myoglobin upstream enhancer region. A putative MEF2-like site (-160 to -169) was likewise necessary for full transcriptional activity in myotubes. Mutations within either of two CANNTG (E-box) motifs (-176 to -148) had only minimal effects on promoter function. We identified and partially purified from nuclear extracts a 40-kDa protein (CBF40) that binds specifically to oligonucleotides containing the CCAC box sequence. A mutation of the CCAC box that disrupted promoter function in vivo also impaired binding of CBF40 in vitro. These data suggest that cooperative interactions between CBF40 and other factors including MEF-2 are required for expression of the human myoglobin gene in skeletal muscle.


1989 ◽  
Vol 9 (1) ◽  
pp. 50-56 ◽  
Author(s):  
P A Sherman ◽  
P V Basta ◽  
T L Moore ◽  
A M Brown ◽  
J P Ting

The promoter regions of class II major histocompatibility complex genes contain two highly conserved sequences, the X and Y boxes, which may be involved in the control of class II gene expression. In this study, we correlate in vivo functional assays for cis-acting regulatory elements in the HLA-DR alpha gene with in vitro binding assays for trans-acting regulatory proteins. Mutagenesis and transient transfection analyses indicated that both the X and Y boxes were important for HLA-DR alpha promoter function in a B lymphoblastoid cell line. Although specific nuclear protein interactions with the X consensus sequence were not apparent, the Y box, which contained an inverted CCAAT sequence, did bind specifically to at least one nuclear protein. This Y box-binding protein was present in nuclear extracts of all cell types examined, including human B and T cells and HeLa cells. The molecular mass of the protein, as determined by photoactivated protein-DNA cross-linking, was approximately 40 to 50 kilodaltons. Mutagenesis of the Y box that decreased protein binding also decreased promoter activity, implying that protein binding to this DNA sequence is important for DR alpha promoter function.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1429-1441 ◽  
Author(s):  
Jutta Deckert ◽  
Ana Maria Rodriguez Torres ◽  
Soo Myung Hwang ◽  
Alexander J Kastaniotis ◽  
Richard S Zitomer

Abstract Aerobic repression of the hypoxic genes of Saccharomyces cerevisiae is mediated by the DNA-binding protein Rox1 and the Tup1/Ssn6 general repression complex. To determine the DNA sequence requirements for repression, we carried out a mutational analysis of the consensus Rox1-binding site and an analysis of the arrangement of the Rox1 sites into operators in the hypoxic ANB1 gene. We found that single base pair substitutions in the consensus sequence resulted in lower affinities for Rox1, and the decreased affinity of Rox1 for mutant sites correlated with the ability of these sites to repress expression of the hypoxic ANB1 gene. In addition, there was a general but not complete correlation between the strength of repression of a given hypoxic gene and the compliance of the Rox1 sites in that gene to the consensus sequence. An analysis of the ANB1 operators revealed that the two Rox1 sites within an operator acted synergistically in vivo, but that Rox1 did not bind cooperatively in vitro, suggesting the presence of a higher order repression complex in the cell. In addition, the spacing or helical phasing of the Rox1 sites was not important in repression. The differential repression by the two operators of the ANB1 gene was found to be due partly to the location of the operators and partly to the sequences between the two Rox1-binding sites in each. Finally, while Rox1 repression requires the Tup1/Ssn6 general repression complex and this complex has been proposed to require the aminoterminal regions of histones H3 and H4 for full repression of a number of genes, we found that these regions were dispensable for ANB1 repression and the repression of two other hypoxic genes.


1989 ◽  
Vol 9 (4) ◽  
pp. 1397-1405
Author(s):  
K E Yutzey ◽  
R L Kline ◽  
S F Konieczny

During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.


1994 ◽  
Vol 14 (5) ◽  
pp. 3494-3503
Author(s):  
U Yavuzer ◽  
C R Goding

For a gene to be transcribed in a tissue-specific fashion, expression must be achieved in the appropriate cell type and also be prevented in other tissues. As an approach to understanding the regulation of tissue-specific gene expression, we have analyzed the requirements for melanocyte-specific expression of the tyrosinase-related protein 1 (TRP-1) promoter. Positive regulation of TRP-1 expression is mediated by both an octamer-binding motif and an 11-bp element, termed the M box, which is conserved between the TRP-1 and other melanocyte-specific promoters. We show here that, consistent with its ability to activate transcription in a non-tissue-specific fashion, the M box binds the basic-helix-loop-helix factor USF in vitro. With the use of a combination of site-directed mutagenesis and chimeric promoter constructs, additional elements involved in regulating TRP-1 expression were identified. These include the TATA region, which appears to contribute to the melanocyte specificity of the TRP-1 promoter. Mutational analysis also identified two repressor elements, one at the start site, the other located at -240, which function both in melanoma and nonmelanoma cells. In addition, a melanocyte-specific factor, MSF, binds to sites which overlap both repressor elements, with substitution mutations demonstrating that binding by MSF is not required for repression. Although a functional role for MSF has not been unequivocally determined, the location of its binding sites leads us to speculate that it may act as a melanocyte-specific antirepressor during transcription of the endogenous TRP-1 gene.


Sign in / Sign up

Export Citation Format

Share Document