Small-Molecule Inhibitor Screen Rapidly Identifies Key Signaling Pathways in Leukemogenesis

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2519-2519
Author(s):  
Jeffrey W Tyner ◽  
Heidi Erickson ◽  
Stephen Oh ◽  
Jason R. Gotlib ◽  
Michael W.N. Deininger ◽  
...  

Abstract Aberrantly activated tyrosine kinases and their associated signaling pathways are critical to leukemogenesis and primary acute myeloid leukemia (AML) cell viability. While aberrant kinase activation has been confirmed in a significant percentage of AML, constitutive phosphorylation of STAT5, a marker of tyrosine kinase activation, is present in the majority of AML samples indicating that as yet unidentified tyrosine kinases can be aberrantly activated and contribute to leukemogenesis. Efforts to identify activating tyrosine kinase mutations using high-throughput sequencing have identified low frequency mutations of uncertain functional significance. Because these studies failed to detect additional high-frequency kinase mutations, the identity and mechanism of tyrosine kinase activation may be unique in many AMLs. Methods: To rapidly identify activated kinase pathways in individual, primary AML samples, we have developed a small-molecule inhibitor array which includes 90 small-molecule, cell-permeable inhibitor compounds including a core of 36 tyrosine kinase inhibitors that covers the majority of the tyrosine kinome. Many of the inhibitors are available for clinical use or are in clinical development. In this assay, inhibitors were placed in 96-well plates at four serial dilutions to allow IC50 calculations. Three days after adding primary AML cells to each well, we performed an MTS cell viability assay to evaluate the effect of each inhibitor on cell viability. Because most inhibitors affect multiple kinases, we compared target specificities of compounds that decrease primary AML cell viability with those that have no effect to identify potential targets. Results: In preliminary proof-of-principal experiments, we tested leukemic cells from five AML patients, including three that were positive for FLT3 internal tandem duplication (ITD), a genetic lesion that is thought to confer a proliferative advantage in approximately 30% of AML patients. Only one sample showed a clear response to small-molecule inhibitors known to target FLT3. The IC50s for the known FLT3 inhibitors MLN518, AST487, CHIR258, Sunitinib, and SU14813 were 10 to 100 fold lower in the leukemic cells from this patient than for the mean and median values for bone marrow samples from normal marrow samples. Interestingly, neither of the remaining FLT3-ITD positive leukemias nor the FLT3 negative leukemias demonstrated decreased viability in the presence of small-molecule inhibitors that target FLT3. A PCR based screen to identify FLT3-ITD alleles showed a near absence of the wild-type FLT3 allele in this sample, while the wild-type allele was present at equal or greater intensity as the ITD allele in the remaining FLT3-ITD positive AML samples. FLT3-ITD positive leukemias with loss of the FLT3 wild-type allele have been shown to have a poorer prognosis than those retaining a wild-type allele indicating aberrantly activated FLT3 may play a crucial role in leukemic cell viability in this setting and are consistent with a previous report showing that efficacy of the FLT3 inhibitor CEP-701 was greatest in pediatric AML with high FLT3-ITD mutant-to-wild-type allelic ratios. Though the remaining AML samples did not show a pattern of inhibitor sensitivity consistent with FLT3 activation, these and many of approximately 15 additional analyzed AML samples showed unique sensitivity patterns implicating other specific kinase targets or kinase families for further investigation while simultaneously providing therapeutic options. Conclusions: These preliminary data demonstrate that the small-molecule inhibitor functional assays can rapidly identify disease causing genes, provide insights into their mechanism of action, and suggest therapeutic options. The distinct patterns of tyrosine kinase sensitivity in these samples support the hypothesis that tyrosine kinases and related pathways contributing to leukemogenesis in each patient may be different and that targeted therapy will be most effective when administered on an individualized basis.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 708-708
Author(s):  
Jeffrey W Tyner ◽  
Luke Fletcher ◽  
Wayne Yang ◽  
Stephen T Oh ◽  
Jason R. Gotlib ◽  
...  

Abstract Abstract 708 Aberrantly activated tyrosine kinases and their associated signaling pathways are critical to leukemogenesis and primary acute myeloid leukemia (AML) cell viability. While aberrant kinase activation has been confirmed in a significant percentage of AML, constitutive phosphorylation of STAT5, a marker of tyrosine kinase activation, is present in the majority of AML samples indicating that as yet unidentified tyrosine kinases can be aberrantly activated and contribute to leukemogenesis. Efforts to identify activating tyrosine kinase mutations using high-throughput sequencing have identified low frequency mutations of uncertain functional significance. Because these studies failed to detect additional high-frequency kinase mutations, the identity and mechanism of tyrosine kinase activation may be unique in many AMLs. To avoid the imitations of high-throughput sequencing, we have developed a functional assay that can rapidly and simultaneously identify therapeutic targets while providing therapeutic options. Methods: To rapidly identify activated kinase pathways in individual, primary AML samples, we have developed a small-molecule inhibitor array which includes 90 small-molecule, cell-permeable inhibitor compounds including a core of 36 tyrosine kinase inhibitors that covers the majority of the tyrosine kinome. Many of the inhibitors are available for clinical use or are in clinical development. In this assay, inhibitors were placed in 96-well plates at four serial dilutions to allow IC50 calculations. Three days after adding primary AML cells to each well, we performed an MTS cell viability assay to evaluate the effect of each inhibitor on cell viability. Because most inhibitors affect multiple kinases, we compared target specificities of compounds that decrease primary AML cell viability with those that have no effect to identify potential targets. Results: In preliminary proof-of-principal experiments, we tested leukemia cell lines with known activating tyrosine kinase mutations and Ba/F3 cell lines expressing activated tyrosine kinases. Appropriate inhibitor sensitivity profiles were obtained in CMK cells which depend on a JAK3 A572V mutation for viability, MKPL-1 cells with an activating CSF1R translocation, and in a Ba/F3 line expressing JAK2 V617F. In addition to the primary target, downstream targets were frequently identified; MKPL-1 cells also showed sensitivity to phosphoinositol 3-kinase and NFKB inhibitors. Thus, not only primary targets but the downstream signaling pathways critical to leukemic cell viability can be highlighted using this assay. To date, we have analyzed approximately 150 primary leukemia and lymphoma samples. In some cases, targets could be identified by comparison of overlapping kinase specificities for compounds that decreased leukemic cell viability and subtraction of possible kinase targets inhibited by compounds that had no effect on viability. However, many cases exhibited complex, often unique, inhibitor sensitivity profiles that complicated target identification. Comparison with sensitivity profiles for known aberrantly activated kinases was useful when available. Accordingly, additional leukemia cell lines and Ba/F3 lines that depend on a single aberrantly activated tyrosine kinase for viability are being evaluated. Automated scripts that correlate the leukemic cell inhibitor sensitivity with the inhibitor target specificity are also in preparation. Conclusions: These preliminary data demonstrate that the small-molecule inhibitor functional assays can rapidly identify disease causing genes, provide insights into their mechanism of action, and suggest therapeutic options. The distinct patterns of tyrosine kinase sensitivity in these samples support the hypothesis that tyrosine kinases and related pathways contributing to leukemogenesis in each patient may be different and that targeted therapy will be most effective when administered on an individualized basis. Disclosures: Druker: OHSU patent #843 - Mutate ABL Kinase Domains: Patents & Royalties; MolecularMD: Equity Ownership; Roche: Consultancy; Cylene Pharmaceuticals: Consultancy; Calistoga Pharmaceuticals: Consultancy; Avalon Pharmaceuticals: Consultancy; Ambit Biosciences: Consultancy; Millipore via Dana-Farber Cancer Institute: Patents & Royalties; Novartis, ARIAD, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2754-2754
Author(s):  
Jeffrey W Tyner ◽  
Stephen Spurgeon ◽  
Luke B Fletcher ◽  
Wayne Yang ◽  
Tibor Kovacsovics ◽  
...  

Abstract Abstract 2754 The development of more effective and less toxic therapies for acute and chronic leukemias will require the identification of the molecular abnormalities contributing to leukemogenesis and the identification of drugs that specifically block the activity of these lesions. We hypothesize that aberrantly activated tyrosine kinase signaling pathways play a critical role in the pathogenesis of a substantial proportion of leukemia cases, and our preliminary data suggest that the molecular abnormalities causing aberrant kinase activation are unique in a significant number of patients. Thus, effective therapies for leukemia will need to be determined on an individual patient basis. To address this need, we have developed a function-first, small-molecule kinase inhibitor assay that can identify therapeutic targets in tyrosine kinase signaling pathways in primary leukemia samples and provide individualized therapeutic options in a clinically relevant time frame. Methods: To rapidly identify drug sensitivity profiles and activated kinase pathways in individual, primary leukemia samples, we have developed a small-molecule inhibitor array which includes 90 small-molecule, cell-permeable inhibitor compounds including a core of 36 tyrosine kinase inhibitors that collectively target the majority of the tyrosine kinome. Many of the inhibitors are available for clinical use or are in clinical development. Inhibitors were placed in 96-well plates at four serial dilutions to allow IC50 calculations. Three days after adding primary leukemia cells to each well, we performed a tetrazolium based cell viability assay to evaluate the effect of each inhibitor. Because most inhibitors affect multiple kinases, we utilized automated scripts to compare target specificities of compounds that uniquely decreased primary leukemia cell viability to identify potential targets. Results: In preliminary proof-of-principal experiments, we tested leukemia cell lines and primary leukemia samples with known activating tyrosine kinase mutations and Ba/F3 cell lines expressing activated tyrosine kinases. As expected, all cells showed hypersensitivity to compounds with activity against the primary, mutated target. In addition, downstream targets were frequently identified. For example, MKPL-1 cells, which depend on an activating CSF1R translocation for viability, also showed sensitivity to phosphoinositol 3-kinase and NFKB inhibitors. To date, we have fully analyzed approximately 150 primary myeloid and lymphoid leukemia samples. Hierarchical clustering of IC50 data for individual patients identifies activated pathways characteristic to specific leukemia subtypes. Pathways include PI3K activation in acute lymphoblastic leukemia, SRC kinase and BTK activation in chronic lymphocytic leukemia, FLT3 and KIT activation in AML patients, and MEK kinase activation in chronic myelomonocytic leukemia. Importantly, the results show heterogeneous inhibitor sensitivity profiles and potential kinase targets for individual samples even within diagnosis groups supporting a need for individualized targeted therapies. We are currently utilizing inhibitor assay results for clinical trial development. Approximately 40% of samples show sensitivity to at least one FDA approved drug in the inhibitor panel, and we are developing phase II proof-of-concept trials to test the ability of the inhibitor assay to predict effective targeted therapies for individual patients. Conclusions: Our data demonstrate that the small-molecule inhibitor functional assay can rapidly identify genes contributing to leukemogenesis, provide insights into their mechanism of action, and suggest therapeutic options. The unique patterns of inhibitor sensitivity in many samples support the hypothesis that tyrosine kinases and related pathways contributing to leukemogenesis in each patient may be different. These findings, in turn, support the concept that targeted therapy will be most effective when administered on an individualized basis. By utilizing our pre-clinical assay to select individualized leukemia therapies, we hope to create a platform upon which we can rapidly test the effectiveness of individualized kinase therapy and apply this information to enhance development of new drugs and new drug combinations in leukemia patients. Disclosures: Kovacsovics: Celator Pharmaceuticals: Research Funding. Druker:Molecular MD: Consultancy, Equity Ownership. Loriaux:Celator Pharmaceuticals: Research Funding.


2014 ◽  
Vol 15 (12) ◽  
pp. 1635-1645 ◽  
Author(s):  
Qiaoling Sun ◽  
Jinghong Zhou ◽  
Zheng Zhang ◽  
Mingchuan Guo ◽  
Junqing Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document