Recruitment of Donor T Cells to Secondary Lymphoid Tissue Is Enhanced by Conditioning Therapy and Donor T Cells/Marrow

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3506-3506
Author(s):  
Jonathan Serody ◽  
Chris A Wysocki ◽  
Tim P Moran

Abstract Background: Previous investigators have demonstrated that secondary lymphoid tissue (SLT) including the spleen is critical for the initial activation of donor T cells after allogeneic stem cell transplantation (SCT) leading to GVHD. This work showed significant redundancy in the role of all SLT including the spleen and suggested that approaches to prevent GVHD would need to inhibit the migration of donor T cells to all SLT. The mechanisms mediating the migration of donor T-cells to SLT have not been well characterized and the specific role of conditioning therapy in this process has not been investigated. Thus, here we sought to evaluate the expression of trafficking proteins by host antigen presenting cells isolated from the MLN and spleen. Methods: B6D2 recipient mice that underwent conditioning were lethally irradiated the night prior to transplantation. The following day recipient mice were transplanted i.v. with 3 × 106 T cell depleted bone marrow cells with 5 × 106 column purified T-cells. T-cells were from eGFP C57Bl/6 transgenic mice. Six hours after transplantation, recipient mice were sacrificed and the MLN and spleen removed. Dendritic cells (DCs) were isolated by collagenase digestion and mechanical disruption and sorted on a high speed MoFlow sorter using anti-CD11c monoclonal antibodies. Gates were drawn around CD11c high cells that did not express eGFP. 3–5 × 104 DCs from the MLN and 1–2 × 105 DCs from the spleen were pooled from five different mice per group, lysed in an RNA amplification buffer and analyzed either by real-time PCR or Agilent Whole Mouse Genome Microarray Chips. Results: Four different groups of mice were analyzed including one group that received no treatment, one that received irradiation alone, one that received irradiation plus allogeneic bone marrow and T cells, and one that received allogeneic bone marrow and T cells without irradiation. By comparing recipients that received allogeneic bone marrow and T cells, with those that received conditioning therapy, allogeneic bone marrow and T cells, we found that conditioning therapy significantly induced the expression by host DCs of the chemokines, CXCL10, CCL17, CCL20 and CCL22 from DCs isolated from both the MLN and the spleen. CCL3 expression by host cells was only upregulated from DCs isolated from the MLN and not the spleen. Conditioning therapy downregulated the expression of CCL1, CCL2 and CCL4 from DCs isolated from both the MLN and spleen (Table 1). Conditioning therapy markedly enhanced the expression by splenic and MLN DCs of STAT4 and p40 IL-12. Table 1 MLN Spleen CXCL10 14.8 20 CCL3 10.9 −1.0 CCL17 7.0 5.1 CCL22 2.4 7.8 CCL20 2.2 1.6 CCL6 1.3 1.2 CCL5 −1.3 3.0 CCL19 −1.4 −2.3 CXCL9 −1.5 −1.3 CCL1 −2.2 2.2 CCL2 −3.7 −3.0 CCL4 −6.0 −1.4 Next we analyzed the effect of allogeneic bone marrow and T cells on the expression of chemokine ligands and signaling proteins by splenic and MLN DCs. Interestingly, the receipt of allogeneic bone marrow plus T cells and conditioning therapy led to a marked increase in the expression of chemokine ligands by DCs isolated from the spleen with little effect on the expression of chemokine ligands by DCs isolated from the MLN compared to mice that only received irradiation but did not undergo allogeneic transplantation Table 2. MLN Spleen CXCL9 1.1 57 CCL22 2.2 36 CCL5 −1.1 34 CXCL10 2.1 30 CCL17 4.3 8.1 CCL4 −1.1 7.2 CCL6 1.4 6.7 CCL3 6.0 1.0 CCL20 2.4 1.0 CCL1 2.5 −1.5 CCL19 −4.2 −4.0 CCL2 −6.7 −7.1 The receipt of irradiation, donor bone marrow and T cells markedly enhanced the expression by host DCs from the spleen of STAT4 and p40 IL-12 while downregulating the expression of STAT6. We confirmed that the expression of CXCL9, CXCL10, CCL4 and CCL5 were markedly increased by host APCs using real time PCR. Finally, we demonstrated in vitro that donor T cell production of IFN-g was critical to the generation of CXCL9 and CXCL10 by host APCs. Conclusion: Conditioning therapy markedly enhances the expression of chemokine ligands and proteins important in Th1 T cell activation by host APCs. However, the expression was enhanced the most in splenic DCs isolated from recipient mice that had received irradiation with allogeneic bone marrow and allogeneic T cells. Our work suggests that the processes mediating the migration of donor T cells to the spleen may differ from those in the MLN and that the CXCR3 binding chemokines, CXCL9 and CXCL10 along with the CCR5 binding chemokine, CCL3, may be quite critical for donor T cell homing to the spleen.

Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 4080-4088 ◽  
Author(s):  
Mathias M. Hauri-Hohl ◽  
Marcel P. Keller ◽  
Jason Gill ◽  
Katrin Hafen ◽  
Esther Pachlatko ◽  
...  

Abstract Acute graft-versus-host disease (aGVHD) impairs thymus-dependent T-cell regeneration in recipients of allogeneic bone marrow transplants through yet to be defined mechanisms. Here, we demonstrate in mice that MHC-mismatched donor T cells home into the thymus of unconditioned recipients. There, activated donor T cells secrete IFN-γ, which in turn stimulates the programmed cell death of thymic epithelial cells (TECs). Because TECs themselves are competent and sufficient to prime naive allospecific T cells and to elicit their effector function, the elimination of host-type professional antigen-presenting cells (APCs) does not prevent donor T-cell activation and TEC apoptosis, thus precluding normal thymopoiesis in transplant recipients. Hence, strategies that protect TECs may be necessary to improve immune reconstitution following allogeneic bone marrow transplantation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2180-2180
Author(s):  
Christian M. Capitini ◽  
Sarah Herby ◽  
Crystal L. Mackall ◽  
Terry J. Fry

Abstract BACKGROUND: Acute graft versus host disease (GVHD) remains as the major complication after allogeneic bone marrow transplant (BMT) resulting in organ toxicity and immune dysfunction. Indeed, we have previously demonstrated that GVHD impairs responses to dendritic cell vaccines. The pathophysiology of GVHD involves preparative regimen-induced inflammation of target organs, release of inflammatory mediators such as gamma interferon (IFNg), and subsequent activation of alloreactive T cells. Given that IFNg can both contribute to GVHD and provide beneficial immune responses, we explored the potential role of IFNg on GVHD and post-transplant immunocompetence. METHODS: We utilized a minor histocompatibility antigen mismatched, T cell-depleted BMT model, with delayed donor lymphocyte infusions (DLIs) as a means of controlling the induction of acute GVHD and to provide a source of immunocompetence in a thymectomized mouse. To study the role of IFNg on GVHD, we chose either IFNg receptor 1 (IFNgR1) −/− marrow or DLI to permit the normal production of IFNg in GVHD while influencing which cells that can respond to the cytokine. Normal C57BL/6 (B6) or IFNgR1 −/− B6 mice were used as bone marrow donors on day 0 into lethally irradiated, thymectomized B6 × C3H.SW (F1) mice. Normal B6 or IFNgR1 −/− DLIs given with or without a dendritic cell vaccine were introduced at days 14 and 28 post-BMT both to control the induction of GVHD and to provide a population of vaccine-responding cells. F1 recipients were observed for signs of GVHD. ELISPOT of the number of antigen-reactive IFNg-producing splenocytes were also performed to measure functional response to vaccine. RESULTS: The absence of IFNgR1 in the DLI abrogates GVHD as shown by % change in weight (B6 DLI = −6.3 +/− 4.7 vs. IFNgR1−/− DLI = 6.6 +/− 6.1, p=0.001) and allows for greater doses of DLI to be tolerated by the host, however, there is also decreased vaccine responses by ELISPOT (B6 DLI = 1631 vs. IFNgR1−/− DLI = 72, p=0.03). Surprisingly, using IFNgR1−/− bone marrow also abrogates GVHD as shown by % change in weight (B6 marrow = −6.3 +/− 4.7 vs. IFNgR1−/− marrow = 4.4 +/− 4.2, p less than 0.05) and splenocyte count (B6 marrow = 31.48 +/− 12.54 vs. IFNgR1−/− marrow = 63.54 +/− 15.92, p=0.008), but vaccine responses by ELISPOT can be restored to levels that are equivalent of syngeneic control mice, even in the presence of a normal B6 DLI (B6 marrow = 1631 vs. IFNgR1−/− marrow = 9283, p=0.0002). The abrogation of GVHD by IFNgR1−/− marrow does not appear to be a dominant effect since mixtures of IFNgR1 −/− and normal B6 bone marrow still cause GVHD. CONCLUSIONS: Recipients of allogeneic bone marrow and T cells developed GVHD and had decreased vaccine responses by ELISPOT. Loss of IFNgR1 on allogeneic donor lymphocytes abrogates their ability to cause GVHD, but also diminished their ability to respond to vaccine. Surprisingly, loss of IFNgR1 on a donor bone marrow-derived, non T cell results in equivalent abrogation of GVHD, while restoring immunocompetence through favorable responses to a vaccine. Further studies will attempt to identify the phenotype of the responsible bone marrow-derived cell. These results demonstrate a strategy of providing higher doses of DLIs to enhance anti-tumor activity without exacerbating GVHD, and thus, have implications for immune modulation post-allogeneic BMT.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3514-3514
Author(s):  
Kai Sun ◽  
Minghui Li ◽  
Mark A. Hubbard ◽  
Lisbeth A. Welniak ◽  
William J. Murphy

Abstract Lack of engraftment, graft-versus-host disease (GVHD) and tumor relapse are major issues that affect clinical outcome after allogeneic bone marrow transplantation (allo-BMT). Donor T cells in the graft present a dilemma in allo-BMT due to both the beneficial and deleterious clinical effects they can exert. Therefore, modulation of donor T cell function may represent a potential therapeutic approach in allo-BMT. In murine allo-BMT models, It has been demonstrated that donor T cell-derived IFN-gamma is required for optimal graft-versus-tumor (GVT) responses but it also plays complex roles by exhibiting both protective and pathogenic effects in GVHD development. We therefore investigated the role of IFN-gamma responsiveness by the donor T cells in allo-BMT through the use of IFN-gamma receptor deficient (IfnR−/−; RKO) mice. In these experiments, recipient BALB/c (H2d) mice received lethal total body irradiation. Irradiation was followed by the infusion of graded doses of T cell-depleted (TCD) allogeneic bone marrow cells (5 or 15 × 106) intravenously from major histocompatibility complex (MHC)-disparate wild type (WT) C57BL/6 (H2b, IfnR+/+) mice, with or without 0.5 × 106 T cells (or 3 × 106 splenocytes as a source of allogeneic T cells) from either WT (H2b, IfnR+/+) or RKO mice. Compared with transplantation of WT TCD-BMCs with T cells from a WT donor, we found that transplantation of WT TCD-BMCs with RKO T cells resulted in marked and significant increases in myeloid engraftment as determined by CFU-GM, peripheral neutrophil and platelet counts during the early phase of allo-BMT. Consistently, a significant increase serum G-CSF was also found on day 7 after allo-BMT with this group. This enhanced myeloid engraftment by RKO T cells occurred only in murine allo-BMT but not syngeneic BMT models, indicating it is a property of alloreactivity. Interestingly, no significant differences in donor T cell engraftment, nor in the percentage of Treg, Th17, CD4+ or CD8+ T cell subsets and IFN-gamma+ T cells, were observed in spleen. However, on day 7 after allo-BMT, significantly fewer donor T cells were observed in the gut in the recipient of RKO T cells compared to recipients of WT T cells. This reduction of donor T cells in gut was associated with a significant decrease in early acute GVHD lethality. This novel finding suggests transplantation of T cells lacking IFN-gamma receptors resulted in less donor T cell homing to the gut during the early phase of allo-BMT. We next addressed the ability of donor RKO T cells to provide GVT responses. A20 tumor-bearing BALB/c (H2d) mice were transplanted with WT C57BL/6 TCD-BMC. Compared with transplantation of 1 × 106 WT T cells with WT TCD-BMC, co-transplantation of 1 × 106 RKO T cells with WT TCD-BMC resulted in less GVHD-related mortality with greater anti-tumor effects. Taken together, these observations suggest that targeting IFN-gamma receptor signaling on donor T cells may help to improve the efficacy of allo-BMT by promoting donor myeloid engraftment and decreasing early acute GVHD lethality with greater GVT potential due to altered lymphocyte homing.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5167-5167
Author(s):  
Yihuan Chai ◽  
Huiying Qiu ◽  
Hui Lv

Abstract One of the main goals in allogeneic bone marrow(BM) transplantation is the abrogation of graft-versus-host disease (GVHD) with the preservation of antileukemia and antiviral activity. The Study present a selective T cell depletion strategy based on the physical separation of the alloreactive T cells, which were identified by expression of two activation-induced antigens (CD25 and CD69). T cells from C57BL/6(H-2b) mice were first activated with BALB/c (H-2d) recipient spleen cells in a 2-day mixed-lymphocyte-culture (MLC). Following this activation, this compound is selectively depleted based on expression of two activation-induced antigens CD25 and CD69 using magnetic cell sorting. The depleted cells or the untreated cells were then rechallenged respectively in a secondary MLC, with the same stimulator cells or a third-party (DBAH-2k) or tumor- specific (SP2/0, BALB/c-origin myeloma) cells. Cells proliferation were assayed at the indicated time points(1, 2, 3, 4, 5 days). These treated cells or control-cultured cells (2.0×106) mixed with 5.0×106 BM cells from C57BL/6 were transfused respectively by the trail vain into the lethally irradiated BALB/c to observe the survival time, GVHD incidence and pathological analysis. MLC assays demonstrated that this technique led to a significant decrease in alloreactivity of donor cells(29.02~64.17%), which at the same time preserved reactivity against third party cells(49.61~75.69%)and anti-tumor cells(61.14~68.62%). The mice in the group of control-coclutured were died of acute GVHD within 24days. The 7 recipient mice in the treated group were free of acute GVHD, and 3 mice were died of acute GVHD (aGVHD) within 23 days. MACS-based ex-vivo depletion of alloreactive donor T cells based on expression of two activation-induced antigens (CD25 and CD69) could inhibit anti-host responses, by contrast, anti-SP2/O and anti-third-party responses were preserved. Cotransplantation of these selected depleted cells and BM cells could reduce aGVHD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1880-1880
Author(s):  
Trisha Dant ◽  
Danny Bruce ◽  
Leshara Fulton ◽  
Michelle West ◽  
Niko Foger ◽  
...  

Abstract Allogeneic stem cell transplant is a standard treatment for patients with high-risk and relapsed myeloid and lymphoid malignancies. However, donor T cells from the stem cell graft mediate graft-versus-host disease (GVHD), which is a common cause of morbidity and mortality for transplant recipients. Our group and others have shown that migration of donor T cells into secondary lymphoid tissue (SLT) and subsequent migration to target organs is critical to the pathogenesis of acute GVHD. The Coronin family of proteins consists of actin-binding proteins, which regulate filament formation by interacting with the Arp2/3 complex. Coronin 1B, a ubiquitously expressed member of the Coronin family, is required for lamellipodial protrusion and effective cell migration. Previous work has not evaluated a role for this protein in the function of T lymphocytes or during acute GVHD. To evaluate the effect of Coronin 1B in acute GVHD pathogenesis, we transplanted B6 T cell depleted bone marrow cells with wild type or Coronin 1B-/- T cells to lethally irradiated B6D2 and BALB/c recipient mice and evaluated clinical score of GVHD and overall survival. B6D2 recipients of Coronin 1B-/- T cells demonstrated 100% survival (Figure 1A. p< .001 as determined by Log-rank (Mantel-Cox) test) and significantly decreased clinical scores after transplant. This was confirmed with improvement in survival in BALB/c recipients of Coronin 1B-/- T cells. Additionally, Coronin 1B-/- T cells were capable of eliminating P815 tumor cells, indicating that loss of Coronin 1B does not inhibit graft-versus-tumor activity. By day 12 post- transplant, all mice receiving bone marrow alone developed tumor compared to none of the mice receiving Coronin 1B-/- T Cells. However, protection was not complete as 40% of Coronin 1B-/- T cell recipients developed tumor by day 23. To determine the effect of Coronin 1B on T cell migration during GVHD, B6D2 recipients were given GFP-expressing wild type or Coronin 1B-/- T cells along with T cell depleted bone marrow. Lymphoid tissue and target organs were harvested and analyzed by flow cytometry or GFP ELISA. We observed decreased accumulation of Coronin 1B-/- CD4+ (Figure 1B. p< .01 as determined by Student's t -test) and CD8+ T cells in the inguinal lymph node, mesenteric lymph node, and the spleen 4 days after transplant with no difference in accumulation in lymphoid tissue on days 7 and 14 after transplant. Additionally, we found decreased accumulation of Coronin 1B-/- donor T cells in the lung, colon and spleen 14 days after transplant (Figure 1C. p< .05 by Student's t -test). We also quantified the amount of cytokine in target organs by ELISA, and observed a decrease in IFN-γ and TNF-α in the colon 14 days after transplant. Our data demonstrate that Coronin 1B-/- T cells elicit reduced GVHD compared to wild type T cells. This was correlated with decreased accumulation of Coronin 1B-/- T cells in SLT early after transplant. These data indicate that targeting the migration of T cells to SLT is a viable approach to prevent acute GVHD. Figure 1. (A) Kaplan Meier curve comparing B6D2 recipients of Coronin 1B-/- T cells and wild type (WT) T Cells. (B) Decreased accumulation of Coronin 1B-/- T Cells 4 Days after transplant. For panels (B) and (C) black bars indicate recipients of WT T cells while red bars indicate recipients of Coronin 1B-/- T cells. Inguinal lymph nodes (ILN) were pooled from n=5 mice from each group. Spleens were analyzed individually. GFP expressing donor cells were analyzed by flow cytometry. Representative image of two experiments. (C) Coronin 1B-/- T cells express decreased accumulation in the lung, colon and spleen 14 days after transplant. Target organs were analyzed by GFP ELISA to detect GFP+ Donor Cells (n=5 in each group). Figure 1. (A) Kaplan Meier curve comparing B6D2 recipients of Coronin 1B-/- T cells and wild type (WT) T Cells. (B) Decreased accumulation of Coronin 1B-/- T Cells 4 Days after transplant. For panels (B) and (C) black bars indicate recipients of WT T cells while red bars indicate recipients of Coronin 1B-/- T cells. Inguinal lymph nodes (ILN) were pooled from n=5 mice from each group. Spleens were analyzed individually. GFP expressing donor cells were analyzed by flow cytometry. Representative image of two experiments. (C) Coronin 1B-/- T cells express decreased accumulation in the lung, colon and spleen 14 days after transplant. Target organs were analyzed by GFP ELISA to detect GFP+ Donor Cells (n=5 in each group). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3984-3992 ◽  
Author(s):  
E Roux ◽  
C Helg ◽  
F Dumont-Girard ◽  
B Chapuis ◽  
M Jeannet ◽  
...  

We have studied the repopulation of the T-cell compartment in 27 patients transplanted with bone marrow from an (HLA)-identical sibling. Significant differences were found between recipients of unmanipulated and T-cell depleted grafts. Analysis of the T cells by a method based on amplification of minisatellite DNA regions showed that without depletion > 99.9% of the clones responding to a mitogenic stimulus after transplantation were of donor origin. In contrast, when the graft had been depleted with Campath-1M plus complement, a significant part of the T cells cloned during the first weeks after transplantation comprised of recipient T cells that had survived the preconditioning. This mixed population of low numbers donor and recipient T cells (19 +/- 31/mm3 at day 14) expanded rapidly (predominantly CD8+ T cells) during the first 2 months, without a significant change of the ratio of recipient/donor T cells. In 11 of 17 evaluable patients a late wave ( > 9 months) of donor T cells occurred. As a consequence, T-cell chimerism changed in favor of donor T cells and the CD4/CD8 ratio that had been reversed ( < 0.5) after the first expansion, normalized (1.5 +/- 0.51). Analysis of the T-cell receptor repertoire showed that in recipients of a T-cell depleted graft, the recipient as well as the donor T cells that repopulated the peripheral T-cell pool during the first month, were the progeny of a limited number of precursors. Because without depletion, when larger numbers of donor T cells had been cotransfused with the marrow, the repertoire was much more diverse, these data show that immediately after transplantation, the peripheral pool is repopulated primarily through expansion of circulating T cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 65-65 ◽  
Author(s):  
Il-Kang Na ◽  
Sydney X. Lu ◽  
Gabrielle L. Goldberg ◽  
Daniel Daniel Hirschhorn-Cymerman ◽  
Christopher G. King ◽  
...  

Abstract Although thymic graft-versus-host-disease (tGVHD) has been recognized as an important contributor to impaired T cell reconstitution, limited T cell repertoire and increased infection risk in patients with GVHD, the molecular basis of interactions between donor alloreactive T cells, donor bone marrow (BM)-derived thymocytes, and host hematopoietic and non-hematopoietic thymic stromal cells in GVHD has not been well-defined. Here we analyzed the role of molecules relevant for T cell trafficking, cytolytic function, and co-stimulation and co-inhibition of alloreactive T cells in tGVHD. We first demonstrated that thymic output (as measured by RAG2+ splenic recent thymic emigrants) as well as the thymic cellularity (especially of CD4+CD8+ thymocytes) were inversely proportional to numbers of mature donor T cells infused with the allograft, suggesting that tGVHD severity was inversely associated with thymic function. We then studied the migration of alloreactive donor T cells in vivo with bioluminescence imaging (BLI) and found that luciferase-expressing donor T cells infiltrated the thymus within one week after allogeneic bone marrow transplantation (BMT) (Fig. 1). Upon adoptive transfer of CFSE-labeled donor T cells we noted that thymus-infiltrating alloreactive donor T cells were largely fast-proliferating (CFSElo) and highly activated (CD25+ CD44+). We analyzed the importance of T cell trafficking molecules for tGVHD using mice deficient for certain trafficking molecules, and assessed tGVHD by loss of BM-derived CD4+CD8+ thymocytes. We found that CCR9, b7 integrin subunit, and PSGL-1 were all partially required for tGVHD, while L-selectin and aE integrin subunit may be dispensable (Fig. 2A). Similarly, we examined the role of T cell cytolytic pathways for tGVHD, and found that FasL and TRAIL were required for tGVHD, but that perforin and TNF were dispensable (Fig. 2B). Finally, we assessed the role of various T cell co-stimulatory and co-inhibitory molecules for tGVHD, and found that CEACAM1, OX40 and CTLA4 were required, while GITR was partially required and ICOS was dispensable (Fig. 2C). Upon further analysis of donor BM-derived thymocytes, we observed that Bcl-2 expression in donor BM-derived thymocytes was decreased in recipients with GVHD vs. those without GVHD, which suggests that survival of thymocytes is decreased during tGVHD. Hollander and others have previously demonstrated in non-irradiated GVH reaction models that host non-hematopoietic thymic stroma may be an important target for donor alloreactive T cells. We assessed the expression of the death receptors Fas and DR5 in thymic stroma from normal and irradiated (850 cGy) BALB/c mice. We observed that in particular, MHC class II-negative stroma (endothelial cells and fibroblasts), as well as a population of MHC class II-intermediate stroma (epithelial cells) upregulated the expression of both Fas and DR5 after irradiation. Our study defines the specific pathways for cytolysis, trafficking and immune modulation involved in tGVHD and suggests selective therapeutic targets to attenuate tGVHD and improve post-transplant T-cell reconstitution in patients with GVHD. Fig 1. BLI demonstrate a distinct distribution pattern for alloreactive donor T cells in allogeneic BMT recipients, Allogeneic Balb/c recipients show a strong signal on day 4 post-transparent after transfer of 10×108 luc+ splenocytes as measured by total body photon emission. Ex vivo imaging confirms the infiltration of luc+ splenocytes to the thymus. Fig 1. BLI demonstrate a distinct distribution pattern for alloreactive donor T cells in allogeneic BMT recipients, Allogeneic Balb/c recipients show a strong signal on day 4 post-transparent after transfer of 10×108 luc+ splenocytes as measured by total body photon emission. Ex vivo imaging confirms the infiltration of luc+ splenocytes to the thymus. Fig 2. We assessed the role of molecules relevant for T cell trafficking (A), cytolytic function (B), and co-stimulation, co-inhibition (C). Irradiated BALB/c mice received 5×106 T cell depleted C57BL/6 bone marrow + 0.25×106 purified splenic T cells. Absolute numbers of donor-BM-derived CD4+CD8+ thymocytes are shown. Black bars indicate means. p-values were calculated vs. recipients of WT T cells(*p<0.05, **p<0.01) Fig 2. We assessed the role of molecules relevant for T cell trafficking (A), cytolytic function (B), and co-stimulation, co-inhibition (C). Irradiated BALB/c mice received 5×106 T cell depleted C57BL/6 bone marrow + 0.25×106 purified splenic T cells. Absolute numbers of donor-BM-derived CD4+CD8+ thymocytes are shown. Black bars indicate means. . / p-values were calculated vs. recipients of WT T cells(*p<0.05, **p<0.01)


Sign in / Sign up

Export Citation Format

Share Document