t cell trafficking
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 40)

H-INDEX

41
(FIVE YEARS 4)

iScience ◽  
2022 ◽  
pp. 103763
Author(s):  
Maria Tredicine ◽  
Chiara Camponeschi ◽  
Davide Pirolli ◽  
Matteo Lucchini ◽  
Mariagrazia Valentini ◽  
...  

2021 ◽  
pp. canimm.CIR-21-0061-E.2021
Author(s):  
Ward Celus ◽  
Ana I. Oliveira ◽  
Silvia Rivis ◽  
Heleen H. Van Acker ◽  
Ewout Landeloos ◽  
...  

2021 ◽  
Author(s):  
Frederic Lagarrigue ◽  
Boyang Tan ◽  
Qinyi Du ◽  
Zhichao Fan ◽  
Miguel A. Lopez-Ramirez ◽  
...  

AbstractAgonist induced increase in integrin affinity for ligands (activation) plays a pivotal role in T cell trafficking and functions. Activation requires Rap1 GTPase-mediated recruitment of talin1 to the integrins in the plasma membrane. Rap1-interacting adaptor molecule (RIAM) is a Rap1 effector that serves this function in T cells. In addition, Rap1 directly binds to talin1 to enable integrin activation in platelets. Here, we assessed the relative contributions of the Rap1-talin1 interaction and RIAM and provide a complete accounting of the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Disruption of both Rap1 binding sites in talin1 (talin1 (R35E,R118E)) causes a partial defect in αLβ2, α4β1 and α4β7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing and functions. Over-expression of RIAM bypasses the integrin activation defect in Tconv cells expressing talin1 (R35E,R118E), indicating that RIAM can substitute for Rap1 binding to talin in integrin activation. Conversely, deletion of RIAM in talin1 (R35E,R118E) Tconv cells abrogates activation of αLβ2, α4β1 and α4β7. RIAM and lamellipodin (LPD) are mammalian members of the MRL protein family; LPD plays a more important role than RIAM in Treg cell integrin activation. Nevertheless, loss of RIAM profoundly exacerbates the defects in Treg cell function caused by the talin1 (R35E,R118E) mutation. Most importantly, deleting both MRL proteins combined with talin1 (R35E,R118E) phenocopies the complete lack of integrin activation observed in Rap1a/b null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLβ2, α4β1 and α4β7 integrin activation in T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiali Zhang ◽  
Ji Tao ◽  
Ruo-Nan Gao ◽  
Zhi-Yuan Wei ◽  
Yu-Shan He ◽  
...  

The involvement of gut microbiota in T-cell trafficking into tumor tissue of colorectal cancer (CRC) remains to be further elucidated. The current study aimed to evaluate the expression of major cytotoxic T-cell trafficking chemokines (CTTCs) and chemokine-associated microbiota profiles in both tumor and adjacent normal tissues during CRC progression. We analyzed the expression of chemokine C-X-C motif ligands 9, 10, and 11 (CXCL9, CXCL10, and CXCL11), and C-C motif ligand 5 (CCL5), characterized gut mucosa-associated microbiota (MAM), and investigated their correlations in CRC patients. Our results showed that the expression of CXCL9, CXCL10, and CXCL11 was significantly higher in tumor than in adjacent normal tissues in 136 CRC patients. Notably, the high expression of CXCL9 in tumor tissues was associated with enhanced CD8+ T-cell infiltration and improved survival. Moreover, the MAM in tumor tissues showed reduction of microbial diversity and increase of oral bacteria. Microbial network analysis identified differences in microbial composition and structure between tumor and adjacent normal tissues. In addition, stronger associations between oral bacteria and other gut microbes were observed. Furthermore, the correlation analysis between the defined MAM and individual CTTCs showed that the CTTCs’ correlated operational taxonomic units (OTUs) in tumor and adjacent normal tissues rarely overlap with each other. Notably, all the enriched OTUs were positively correlated with the CTTCs in either tumor or adjacent normal tissues. Our findings demonstrated stronger interactions between oral bacteria and gut microbes, and a shifted correlation pattern between MAM and major CTTCs in tumor tissues, underlining possible mechanisms of gut microbiota–host interaction in CRC.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5134
Author(s):  
Bisera Stepanovska Tanturovska ◽  
Aleksandra Zivkovic ◽  
Faik Imeri ◽  
Thomas Homann ◽  
Burkhard Kleuser ◽  
...  

Sphingosine 1-phosphate (S1P) is an extensively studied signaling molecule that contributes to cell proliferation, survival, migration and other functions through binding to specific S1P receptors. The cycle of S1P1 internalization upon S1P binding and recycling to the cell surface when local S1P concentrations are low drives T cell trafficking. S1P1 modulators, such as fingolimod, disrupt this recycling by inducing persistent S1P1 internalization and receptor degradation, which results in blocked egress of T cells from the secondary lymphoid tissues. The approval of these compounds for the treatment of multiple sclerosis has placed the development of S1PR modulators in the focus of pharmacological research, mostly for autoimmune indications. Here, we report on a novel anellated bismorpholino derivative of oxy-fingolimod, named ST-2191, which exerts selective S1P1 agonist and functional antagonist potency. ST-2191 is also effective in reducing the lymphocyte number in mice, and this effect is not dependent on phosphorylation by sphingosine kinase 2 for activity. These data show that ST-2191 is a novel S1P1 modulator, but further experiments are needed to analyze the therapeutic impact of ST-2191 in animal models of autoimmune diseases.


2021 ◽  
Vol 119 ◽  
pp. 102610
Author(s):  
Patricia Hamminger ◽  
Luca Marchetti ◽  
Teresa Preglej ◽  
René Platzer ◽  
Ci Zhu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mahasweta Gooptu ◽  
Joseph Harry Antin

Graft-vs. host disease (GVHD), both acute and chronic are among the chief non-relapse complications of allogeneic transplantation which still cause substantial morbidity and mortality despite significant advances in supportive care over the last few decades. The prevention of GVHD therefore remains critical to the success of allogeneic transplantation. In this review we briefly discuss the pathophysiology and immunobiology of GVHD and the current standards in the field which remain centered around calcineurin inhibitors. We then discuss important translational advances in GVHD prophylaxis, approaching these various platforms from a mechanistic standpoint based on the pathophysiology of GVHD including in-vivo and ex-vivo T-cell depletion alongwith methods of selective T-cell depletion, modulation of T-cell co-stimulatory pathways (checkpoints), enhancing regulatory T-cells (Tregs), targeting T-cell trafficking as well as cytokine pathways. Finally we highlight exciting novel pre-clinical research that has the potential to translate to the clinic successfully. We approach these methods from a pathophysiology based perspective as well and touch upon strategies targeting the interaction between tissue damage induced antigens and T-cells, regimen related endothelial toxicity, T-cell co-stimulatory pathways and other T-cell modulatory approaches, T-cell trafficking, and cytokine pathways. We end this review with a critical discussion of existing data and novel therapies that may be transformative in the field in the near future as a comprehensive picture of GVHD prophylaxis in 2020. While calcineurin inhibitors remain the standard, post-transplant eparinsphamide originally developed to facilitate haploidentical transplantation is becoming an attractive alternative to traditional calcinuerin inhibitor based prophylaxis due to its ability to reduce severe forms of acute and chronic GVHD without compromising other outcomes, even in the HLA-matched setting. In addition T-cell modulation, particularly targeting some important T-cell co-stimulatory pathways have resulted in promising outcomes and may be a part of GVHD prophylaxis in the future. Novel approaches including targeting early events in GVHD pathogenesis such as interactions bvetween tissue damage associated antigens and T-cells, endothelial toxicity, and T-cell trafficking are also promising and discussed in this review. GVHD prophylaxis in 2020 continues to evolve with novel exicitng therapies on the horizon based on a more sophisticated understanding of the immunobiology of GVHD.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eirini Giannoudaki ◽  
Siobhan Gargan ◽  
Seamus Hussey ◽  
Aideen Long ◽  
Patrick T. Walsh

T cell subsets are considered central orchestrators of inflammation and homeostasis in the intestine and are established targets for the treatment of inflammatory bowel disease. While approaches aimed at the neutralization of T cell effector cytokines have provided significant benefits for pediatric and adult patients, more recent strategies aimed at inhibiting the infiltration of pathogenic T cell subsets have also emerged. In this review, we describe current knowledge surrounding the function of T cell subsets in pediatric inflammatory bowel disease and outline approaches aimed at targeting T cell trafficking to the intestine which may represent a new treatment option for pediatric inflammatory bowel disease.


2021 ◽  
Vol 14 ◽  
pp. 175628482110547
Author(s):  
Michaela Melde ◽  
Tanja M. Müller ◽  
Ines Schneider ◽  
Carol-Immanuel Geppert ◽  
Laura Mühl ◽  
...  

Background: The anti-α4β7 integrin antibody vedolizumab is an established therapeutic option for the treatment of inflammatory bowel disease (IBD). It has also been successfully used in patients with chronic antibiotic-refractory pouchitis following proctocolectomey with ileal pouch-anal anastomosis. However, the expression and function of gut-homing markers as well as strategies to predict the response to vedolizumab in pouchitis are understudied so far. Methods: We used flow cytometry and dynamic adhesion assays to study the expression and function of gut-homing integrins on T cells from patients with pouchitis and controls as well as longitudinally during therapy of pouchitis with vedolizumab. Moreover, we describe clinical effects of vedolizumab in a cohort of patients with pouchitis. Results: T cells from patients with pouchitis express a specific profile of gut-homing integrins. Integrin α4β7 on T cells from patients with pouchitis mediates adhesion to mucosal addressin cell adhesion molecule (MAdCAM)-1, which can be blocked by vedolizumab in vitro. Vedolizumab efficiently treats pouchitis in a portion of patients and response correlates with dynamic adhesion profiles to MAdCAM-1. Conclusion: Our data suggest that T cell trafficking seems to be important for the pathogenesis of pouchitis and support the therapeutic use of vedolizumab. Integrin function might serve as a biomarker to predict response to vedolizumab.


Sign in / Sign up

Export Citation Format

Share Document