Specific Hematopoietic and Erythroid Differentiation Defects in Mouse Embryonic Stem (ES) Cells with Abortive Ribosome Assembly.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1088-1088
Author(s):  
Tracie A. Goldberg ◽  
Adrianna Henson ◽  
Sharon Singh ◽  
Abdallah Nihrane ◽  
Jeffrey Michael Lipton ◽  
...  

Abstract Abstract 1088 Poster Board I-110 Background Diamond Blackfan anemia (DBA) is one of the rare inherited bone marrow failure syndromes, characterized by erythroid hypoplasia, congenital anomalies and cancer predisposition. DBA has been shown to result from haploinsufficiency of ribosomal proteins (RPS19, RPS17, RPS24, RPL5, RPL11, RPL35a), which somehow triggers apoptosis of erythroid precursors. There is a marked variation in phenotype among members of the same family and also between subsets of patients with different mutations. Methods We studied primary and secondary in vitro differentiation of two murine ES gene trap cell lines with mutations in Rps19: S17-10H1, in which Rps19 is disrupted by insertion of the ROSAFARY gene trap vector between exons 2 and 3; and YHC074, in which the pGT0Lxf gene trap vector is inserted between exons 3 and 4 and whose growth is feeder cell-independent. For primary differentiation and generation of embryoid bodies (EBs), the ES cells were cultured in a serum-supplemented methylcellulose-based medium containing stem cell factor (SCF). After 7 days, the cultures were fed with a medium containing SCF, interleukin-3 (IL-3), IL-6 and erythropoietin (epo). EBs were scored on day 6 for total quantity, then again on day 13 for hematopoietic percentage. Secondary (hematopoietic) differentiation was performed on day 9 EBs. EBs were harvested and disrupted with collagenase, and the disrupted cells were suspended in a serum-supplemented methylcellulose-based medium with SCF, IL-3, IL-6 and epo. Hematopoietic colonies were counted on day 10. Results Decreased expression of Rps19 protein was confirmed by Western blot analysis in both S17-10H1 and YHC074 gene trap cell lines. We focused on YHC074 because its growth is feeder-independent, and it expresses approximately 50% of normal Rps19 levels. By polysome analysis, we found a selective reduction in the 40S subunit peak in mutant YHC074 cells as compared to parental controls. By Northern blot assays, we also found a relative increase in the 21S pre-rRNA to 18S rRNA ratio in mutant YHC074 cells. The viability of undifferentiated ES cells was not significantly different from parental control cells in the first 72 hours of culture; however, there was a significantly decreased number of EBs, particularly hematopoietic EBs, following primary differentiation (Fig. 1). Furthermore, when day 9 EBs were induced to secondary (hematopoietic) differentation, there was a significant decrease in the ratio of erythroid (CFU-E and BFU-E) to myeloid (CFU-GM) colony formation in mutant YHC074 cells. In order to confirm these results in an isogenic background, we stably transfected S17-10H1 cells with a vector expressing wild-type Rps19 cDNA and the puromycin resistance gene. Several resistant clones were found to overexpress Rps19 and were further studied in secondary differentiation experiments. There was a significant decrease in erythroid and myeloid colony formation and in BFU-E size from mutant S17-10H1 cells when compared to the Rps19-overexpressing clone, suggesting a direct relationship between the levels of Rps19 protein and hematopoietic growth and differentiation. Conclusion Using two ES cell lines with slightly different Rps19 mutations and genetic backgrounds, we have recapitulated the major DBA erythroid growth and differentiation defect, as well as the defect in ribosome assembly and rRNA processing caused by Rps19 haploinsufficiency. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3864-3864
Author(s):  
Julia E Draper ◽  
William G Wood ◽  
Catherine Porcher ◽  
Paresh Vyas

Abstract Abstract 3864 Precise regulation of Gata1 expression is required in order to control the balance between lymphoid/granulomonocytic (GM) and megakaryocytic-erythroid (MegE) specification, as well as to ensure correct differentiation of the MegE lineages. Transcriptional control is conferred in part by cis regulatory elements. An upstream enhancer, HS-3.5, and the erythroid first exon IE of Gata1 are necessary and sufficient to direct transgene expression in primitive but not definitive erythroid cells. Transgene expression in definitive red blood cells is restored by inclusion of an intronic DNaseI hypersensitive site, HS+3.5. Here we report the characterization of the HS+3.5 null embryonic stem cells and the HS+3.5 knockout mouse. In vitro differentiation of HS+3.5 null ES cells resulted in reduced myeloid and megakaryocytic colony formation compared to wild type. The ΔHS+3.5 ES cells retained normal primitive erythroid colony formation. ΔHS+3.5 definitive erythroid colony progenitors displayed a decreased sensitivity to Interleukin 3 (IL3) signalling compared to wild type. ΔHS+3.5 mice were viable and had normal blood counts and films. GM and erythroid progenitors also developed normally. However, there was a mild expansion of the E14.5 foetal liver Megakaryocytic Progenitor (MkP) compartment and an increase in Gata2 expression in both the bone marrow and foetal liver MkPs. Turning to Gata1, a decrease in Gata1 expression was observed in the following compartments: the bone marrow long term haematopoietic stem cell (LT-HSC) and the foetal liver common myeloid progenitor (CMP). The relationship between the effect of the HS+3.5 deletion on Gata1 expression and the haematopoietic phenotype will be discussed. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3093-3093
Author(s):  
Sharon Singh ◽  
Sehba Dsilva ◽  
Jeffrey Michael Lipton ◽  
Steven Ellis ◽  
Johnson M. Liu

Abstract Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome that is characterized by erythroid hypoplasia, risk of other cytopenias, congenital anomalies and a cancer predisposition. Thus far, all the genes identified as mutated in DBA encode ribosomal proteins (RPS19, RPS17, RPS24, RPL5, RPL11, and RPL35a). In the 25% of DBA patients with RPS19 mutations, haploinsufficiency of RPS19 has been linked to faulty ribosome biogenesis, which ultimately predisposes erythroid precursors to apoptosis through as yet unknown mechanisms. Previous attempts by others to apply targeted mutagenesis to Rps19 were unsuccessful because of compensatory Rps19 expression from the non-targeted allele. We have concentrated our efforts on characterizing the murine Rps19-mutated embryonic stem (ES) cell, S17-10H1, which was generated using a genetrap strategy. The gene-trap vector contains a strong splice acceptor-β-geo cassette-poly A termination, and following insertion, it should cause splicing with the exon upstream and termination at the poly A signal, effectively cutting Rps19 in half. S17-10H1 was sequenced using 3′ RACE (rapid amplification of cDNA ends) to confirm insertion of the vector between exons 2 and 3 of Rps19. PCR with primers against the β-geo sequence was also used to confirm insertion of the gene trap vector into the mutant ES cells. Western blot analysis of two different ES cell samples confirmed at least 50% less Rps19 protein than found in the wild-type parental ES cell line, AK7. The ES cells were subsequently induced to undergo primary differentiation into embryoid bodies (EBs). Although there was no significant difference in the EB size or shape at day 5 of culture, the number of EBs that formed in the mutant cultures was decreased by at least three-fold. Preliminary experiments indicated no obvious morphological differences in day 13 EBs derived from parental or mutant ES cells. We attempted to create chimeric mice by microinjection of the S17-10H1 cell line into 36 blastocysts. Six chimeric mice were set up in mating pairs with C57BL/6J partners. Analysis of more than 60 pups from the 60% chimeric male revealed a lack of germline transmission, possibly indicating that this mutation leads to embryonic lethality or inability to complete gametogenesis. We conclude that this ES cell differentiation model mimics the human disease in leading to Rps19 haploinsufficiency and provides a new and potentially powerful tool that can be used to elucidate molecular mechanisms and test potential therapies in DBA.


Reproduction ◽  
2010 ◽  
Vol 139 (3) ◽  
pp. 565-573 ◽  
Author(s):  
Nobuhiro Shimozawa ◽  
Shinichiro Nakamura ◽  
Ichiro Takahashi ◽  
Masanori Hatori ◽  
Tadashi Sankai

Several cell types from the African green monkey (Cercopithecus aethiops), such as red blood cells, primary culture cells from kidney, and the Vero cell line, are valuable sources for biomedical research and testing. Embryonic stem (ES) cells that are established from blastocysts have pluripotency to differentiate into these and other types of cells. We examined an in vitro culture system of zygotes produced by ICSI in African green monkeys and attempted to establish ES cells. Culturing with and without a mouse embryonic fibroblast (MEF) cell monolayer resulted in the development of ICSI-derived zygotes to the blastocyst stage, while culturing with a buffalo rat liver cell monolayer yielded no development (3/14, 21.4% and 6/31, 19.4% vs 0/23, 0% respectively; P<0.05). One of the nine blastocysts, which had been one of the zygotes co-cultured with MEF cells, formed flat colonies consisting of cells with large nuclei, similar to other primate ES cell lines. The African green monkey ES (AgMES) cells expressed pluripotency markers, formed teratomas consisting of three embryonic germ layer tissues, and had a normal chromosome number. Furthermore, expression of the germ cell markers CD9 and DPPA3 (STELLA) was detected in the embryoid bodies, suggesting that AgMES cells might have the potential ability to differentiate into germ cells. The results suggested that MEF cells greatly affected the quality of the inner cell mass of the blastocysts. In addition, AgMES cells would be a precious resource for biomedical research such as other primate ES cell lines.


2007 ◽  
Vol 19 (1) ◽  
pp. 230 ◽  
Author(s):  
Y.-W. Ou ◽  
K.-H. Lee ◽  
L.-R. Chen ◽  
P.-C. Tang ◽  
H.-F. Guu ◽  
...  

Embryonic stem (ES) cells are pluripotent cells from the inner cell mass (ICM) of the blastocyst. They are capable of differentiating to various cell types, such as neural cells, cardiocytes, hepatic cells, and germ cells. The aim of this study was to establish rabbit ES cell lines as an animal model for human diseases. Blastocysts were collected from New Zealand White rabbits during Days 4 to 5 after breeding. After removal of the mucin coat and the zona pellucida by pronase, the embryos were directly cultured in ES cell medium on mitomycin C-treated mouse embryonic fibroblast (MEF) or STO feeder layers. In Experiment 1, the efficiencies of 2 different feeder layers, MEF and STO, in generating rabbit ES cell lines were compared. Six blastocysts were used for each STO and MEF feeder group. The primary ICM colonies were formed in 67% (4/6) of the cultures on the STO and 83% (5/6) on the MEF. Sixty percent of those primary colonies (3/5) were successfully grown into ES-like cell lines in the MEF feeder group. However, no cell lines were established on the STO feeder. In Experiment 2, whole blastocysts or ICMs isolated by immunosurgery were cultured to establish ES cell lines. A total of 21 blastocysts were recovered from 2 does. Eighteen whole blastocysts and 3 isolated ICMs were cultured on the MEF feeders. Twelve (67%) of the cultured whole blastocysts formed primary ICM colonies, of which 5 (42%) of the cultures continuously propagated and formed ES-like cell lines. In the immunosurgical group, 2 of the 3 isolated ICMs formed primary colonies but only 1 ES-like cell line was established. A total of 9 ES-like cell lines maintained morphological undifferentiation after 14 passages and expressed alkaline phosphatase activity. Seven of the 9 ES-like cells expressed Oct-4 and the stage-specific embryonic antigen-4 (SSEA-4) as detected by immunocytochemical staining. Two cell lines were further induced to differentiate into embryoid bodies in suspension culture. Another 3 cell lines were injected into SCID mice and one of them formed a teratoma. The competence of generating chimeric rabbits and the teratogenicity of the established ES-like cell lines are under evaluation. In conclusion, rabbit ES-like cells were efficiently generated and whole-blastocyst culturing on the MEF feeder appeared to be a preferred method for the isolation and maintenance of rabbit ES-like cell lines.


Reproduction ◽  
2006 ◽  
Vol 132 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S Tielens ◽  
B Verhasselt ◽  
J Liu ◽  
M Dhont ◽  
J Van Der Elst ◽  
...  

Embryonic stem (ES) cells are the source of all embryonic germ layer tissues. Oct-4 is essential for their pluripotency. Sincein vitroculture may influence Oct-4 expression, we investigated to what extent blastocysts culturedin vitrofrom the zygote stage are capable of expressing Oct-4 and generating ES cell lines. We comparedin vivowithin vitroderived blastocysts from B6D2 mice with regard to Oct-4 expression in inner cell mass (ICM) outgrowths and blastocysts. ES cells were characterized by immunostaining for alkaline phosphatase (ALP), stage-specific embryonic antigen-1 (SSEA-1) and Oct-4. Embryoid bodies were made to evaluate the ES cells’ differentiation potential. ICM outgrowths were immunostained for Oct-4 after 6 days in culture. A quantitative real-time PCR assay was performed on individual blastocysts. Of thein vitroderived blastocysts, 17% gave rise to ES cells vs 38% of thein vivoblastocysts. Six-day old outgrowths fromin vivodeveloped blastocysts expressed Oct-4 in 55% of the cases vs 31% of thein vitroderived blastocysts. The amount of Oct-4 mRNA was significantly higher for freshly collectedin vivoblastocysts compared toin vitrocultured blastocysts.In vitrocultured mouse blastocysts retain the capacity to express Oct-4 and to generate ES cells, be it to a lower level thanin vivoblastocysts.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Khodadad Khodadadi ◽  
Huseyin Sumer ◽  
Maryam Pashaiasl ◽  
Susan Lim ◽  
Mark Williamson ◽  
...  

Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES) cells, to date there are few reports about successful isolation of ESCs and no report ofin vivodifferentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors usingOCT4, SOX2, andKLF4in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months) and characterized. The equine iPS (EiPS) cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression ofOCT4, SOX2 NANOG, andSTAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers bothin vitroby embryoid bodies (EBs) formation andin vivoby teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.


2002 ◽  
Vol 11 (7) ◽  
pp. 631-635 ◽  
Author(s):  
Tatsuyuki Takada ◽  
Yutaka Suzuki ◽  
Yasushi Kondo ◽  
Nae Kadota ◽  
Kinji Kobayashi ◽  
...  

The major limitation of nonhuman primate (NHP) embryonic stem (ES) cell research is inefficient genetic modification and limited knowledge of differentiation mechanisms. A genetically modified NHP-ES cell with biomarkers, such as green fluorescent protein (GFP), that allow noninvasive monitoring of transgenic cells, is a useful tool to study cell differentiation control during preimplantation and fetal development, which also plays a crucial role in the development of cell transplantation medicine. Here we report the establishment of transgenic NHP-ES cell lines that express GFP without jeopardizing their pluripotency, which was confirmed by in vitro and in vivo differentiation. These GFP-expressing ES cells reproducibly differentiated into embryoid bodies, neural cells, and cardiac myocytes. They formed teratoma composed of tissues derived from the three embryonic germ layers when transplanted into severe combined immunodeficient disease (SCID) mice. GFP expression was maintained in these differentiated cells, suggesting that these cells were useful for cell transplantation experiments. Furthermore, we showed that these ES cells have the ability to form chimeric blastocysts by introducing into the early preimplantation stage NHP embryo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 138-138 ◽  
Author(s):  
Rita R. Perlingeiro

Abstract A critical role for endoglin (CD105) in early development has been demonstrated in mice deficient for this gene. Embryos homozygous for the endoglin mutation (eng−/−) fail to progress beyond 10.5 days postcoitum due primarily to vascular and cardiac abnormalities (Bordeau et al, 1999). Analysis of 9.5 dpc eng−/− embryos revealed abnormal vasculature and anemia of the yolk sac, suggesting that endoglin may be required for both blood and endothelial lineages. The hemangioblast, the bipotent precursor for hematopoietic and endothelial cells, can be assessed through the blast colony assay (BL-CFC) using a model system based on the in vitro differentiation of embryonic stem (ES) cells into embryoid bodies (EBs). To evaluate a role for endoglin in this early precursor, we differentiated eng−/−, eng+/−, and eng+/+ (wild-type) ES cells into EBs. At day 3 of EB differentiation, cells were disrupted and plated for blast colony formation in methylcellulose media containing vascular endothelial growth factor (VEGF), stem cell factor (SCF), and thrombopoietin (TPO). We found no difference in blast colony formation between heterozygous and wild-type ES cells. However, a significant reduction in the number of BL-CFCs was observed in eng−/− cells when compared to eng+/− or eng+/+ BL-CFCs (p < 0.001). Single eng−/−, eng+/−, and eng+/+ BL-CFCs gave rise to secondary hematopoietic colonies as well as endothelial cells, confirming their nature as hemangioblasts. These results suggest that although endoglin is required for hemangioblast development, its absence does not affect the bipotentiality of formed BL-CFCs. Since anemia was a feature of 9.5 dpc eng−/− yolk sac embryos, we also examined early erythropoiesis using the ES/EB system. For this purpose, eng−/−, eng+/−, and eng+/+ ES cells were differentiated into EBs for 4 days, at which time cells were disrupted and plated for primitive erythroid colonies (EryP) in methylcellulose media containing IL-3, IL-6, SCF, and Epo. We observed a reduction in the number of EryP colonies in eng−/− (p < 0.01) and eng+/− (p < 0.05) EBs when compared to controls (eng+/+). These results corroborate the anemia observed in vivo in the eng−/− embryos. We used RT-PCR and flow cytometry analysis to detect endoglin expression during a time course of EB differentiation. Endoglin is expressed in ES cells and disappears with differentiation. Expression re-appears at day 3 of differentiation, concomitantly with specification of the hemangioblast. Expression thereafter increases, correlating with mature endothelial cells at later time points. We did not find major differences in gene expression for Brachyury, Flk-1, Tie-2, embryonic and adult globins in a time course of EB differentiation for eng−/−, eng+/−, and eng+/+ ES cells. These data point out a role for endoglin, an ancillary receptor for several members of the transforming growth factor (TGF)-beta superfamily, in hemangioblast development.


2002 ◽  
Vol 2 ◽  
pp. 1762-1773 ◽  
Author(s):  
Norio Nakatsuji ◽  
Hirofumi Suemori

Human embryonic stem (ES) cell lines have opened great potential and expectation for cell therapy and regenerative medicine. Monkey and human ES cell lines, which are very similar to each other, have been established from monkey blastocysts and surplus human blastocysts from fertility clinics.Nonhuman primate ES cell lines provide important research tools for basic and applicative research. Firstly, they provide wider aspects of investigation of the regulative mechanisms of stem cells and cell differentiation among primate species. Secondly, their usage does not need clearance or permission from the regulative rules in many countries that are associated with the ethical aspects of human ES cells, although human and nonhuman embryos and fetuses are very similar to each other. Lastly and most importantly, they are indispensable for animal models of cell therapy to test effectiveness, safety, and immunological reaction of the allogenic transplantation in a setting similar to the treatment of human diseases.So far, ES cell lines have been established from rhesus monkey (Macaca mulatta), common marmoset (Callithrix jacchus), and cynomolgus monkey (Macaca fascicularis), using blastocysts produced naturally or by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). These cell lines seem to have very similar characteristics. They express alkaline phosphatase activity and stage-specific embryonic antigen (SSEA)-4 and, in most cases, SSEA-3. Their pluripotency was confirmed by the formation of embryoid bodies and differentiation into various cell types in culture and also by the formation of teratomas that contained many types of differentiated tissues including derivatives of three germ layers after transplantation into the severe combined immunodeficiency (SCID) mice.The noneffectiveness of the leukemia inhibitory factor (LIF) signal makes culture of primate and human ES cell lines prone to undergo spontaneous differentiation and thus it is difficult to maintain these stem cell colonies. Also, these ES cells are more susceptible to various stresses, causing difficulty with subculturing using enzymatic treatment and cloning from single cells. However, with various improvements in culture methods, it is now possible to maintain stable colonies of monkey ES cells using a serum-free medium and subculturing with trypsin treatment. Under such conditions, cynomolgus monkey ES cell lines can be maintained in an undifferentiated state with a normal karyotype and pluripotency even after prolonged periods of culture over 1 year. Such progress should facilitate many aspects of stem cell research using both nonhuman primate and human ES cell lines.


1994 ◽  
Vol 6 (5) ◽  
pp. 563 ◽  
Author(s):  
MB Wheeler

The establishment of embryonic cell lines from swine should be useful for studies of cell differentiation, developmental gene regulation and the production of transgenics. This paper summarizes the establishment of porcine (Sus scrofa) embryonic stem (ES) cell lines from preimplantation blastocysts and their ability to develop into normal chimaeras. ES cells can spontaneously differentiate into cystic embryoid bodies with ectodermal, endodermal, and mesodermal cell types. Further, culture of ES cells to confluence or induction of differentiation with retinoic acid or dimethylsulfoxide results in morphological differentiation into fibroblasts, adipocytes, and epithelial, neuronal, and muscle cells. These ES cells have a normal diploid complement of 38 chromosomes. Scanning electron microscopy of the ES cells reveals a rounded or polygonal, epithelial-like cell with numerous microvilli. The differentiation of these embryonic cell lines into several cell types indicates a pluripotent cell. Furthermore, chimaeric swine have been successfully produced using such ES cells.


Sign in / Sign up

Export Citation Format

Share Document