Activated Platelet-Derived Antimicrobial Peptides Exhibit Virucidal Properties against Vaccinia Virus in Plasma.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2118-2118
Author(s):  
Krishna Mohan V. Ketha ◽  
Shilpakala Sainath Rao ◽  
Chintamani D Atreya

Abstract Abstract 2118 Poster Board II-95 Introduction: Contamination of blood and blood components by bacteria, virus, fungi and parasites is a major safety risk in transfusion medicine. While there has been a tremendous success in inactivating virus contamination in blood products through UV-irradiation, new and novel proof-of-concepts for microbial reduction that enhance risk to benefit ratio of the treated products are still a public health need in transfusion medicine. In the present study, we tested four novel synthetic antimicrobial peptides originating from thrombin-induced human platelet-derived antimicrobial proteins named PD1-PD4 against an enveloped virus, Vaccinia Virus (VV) spiked in plasma as a model system. We have recently shown these peptides to be useful in reducing bacterial burden in plasma and platelets. These short synthetic peptides are human platelet-derived and known to cause no immune response in humans and non-hemolytic in nature as reported by others. Methods: The PD1-PD4 peptides were tested on plasma samples spiked with 10-fold dilutions of the wild-type lab strain of Vaccinia Virus (WR strain). Each spiked sample was pre-incubated individually with a peptide (PD1-PD4) for 1 hour at 37°C. Spiked sample without any peptide was included as control. A cell culture-based standard plaque reduction assay method was utilized to monitor the virucidal effectiveness of the peptides. Minimal inhibitory concentration of the peptides was also estimated by testing the peptides at doubling dilutions of 100 μg/ml, 50 μg/ml, 25 μg/ml and 12.5 μg/ml concentrations. Results: Our analysis revealed that peptides PD3 and PD4 were potent against vaccinia virus resulting in reduction of viral titers in the plasma. PD3 peptide demonstrated the highest virucidal activity by bringing about a 2-log reduction of VV titers. PD4 peptide treatment resulted in a 1-1.5 log reduction in viral titers. The minimal inhibitory concentration analysis revealed that at 50 μg/ml concentration both the PD3 and PD4 were able to bring about a log reduction in viral titers. Conclusion: The present study reports a novel antiviral agent for reducing vaccinia virus contamination in plasma. Safety profiles of these peptides as reported by others in conjunction with our current studies, provide a new proof-of-concept that could be useful as safer and simpler alternatives to the viral reduction agents in transfusion medicine. The findings and conclusions in this abstract have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy. Disclosures: No relevant conflicts of interest to declare.

2015 ◽  
Vol 55 (10) ◽  
pp. 2275-2287 ◽  
Author(s):  
Mara Kozić ◽  
Damir Vukičević ◽  
Juraj Simunić ◽  
Tomislav Rončević ◽  
Nikolinka Antcheva ◽  
...  

Author(s):  
Lê Văn Bảo Duy ◽  
Dương Thị Thủy ◽  
Nguyễn Ngọc Phước ◽  
Trương Thị Hoa ◽  
Nguyễn Đức Quỳnh Anh

Nghiên cứu được tiến hành nhằm xác định nồng độ ức chế tối thiểu (Minimal Inhibitory Concentration - MIC) của một số loại kháng sinh đến vi khuẩn phân lập được từ cá dìa thương phẩm mắc bệnh lở loét (Siganus guttatus). Từ kết quả phân lập định danh cho thấy 2 chủng Vibrio parahaemolyticus VPMP22 và Vibrio tubiashii ATCC 19109 có mặt trên các vết lở loét ở cá dìa thương phẩm. Kết quả thử nghiệm MIC cho thấy các loại kháng sinh Cefuroxim, Cefotaxim, Tetracycline, Erythromicin, Rifamicin có nồng độ ức chế vi khuẩn Vibrio parahaemolyticus VPMP22 tốt nhất dưới 0.21 µg/ml. Các kháng sinh có Cefuroxim, Cefotaxim, Oxytetraciline, Erythromicin, Trimethoprim nồng độ ức chế vi khuẩn Vibrio tubiashii ATCC 19109 tốt nhất dưới 1.25 µg/ml. Penicillin có nồng độ ức chế tối thiểu cao nhất đối với cả 2 chủng vi khuẩn trên (80 µg/ml), cho thấy 2 chủng vi khuẩn trên đã có sự kháng thuốc đối với loại kháng sinh này. Do đó, trong phòng trị bệnh lở loét trên cá dìa nên sử dụng Cefuroxim và Cefotaxim để có hiệu quả cao nhất trong phòng trị bệnh.


2020 ◽  
Vol 20 (14) ◽  
pp. 1264-1273 ◽  
Author(s):  
Bruno Casciaro ◽  
Floriana Cappiello ◽  
Walter Verrusio ◽  
Mauro Cacciafesta ◽  
Maria Luisa Mangoni

The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.


1993 ◽  
Vol 21 (2) ◽  
pp. 151-155
Author(s):  
Gustaw Kerszman

The toxicity of the first ten MEIC chemicals to Escherichia coli and Bacillus subtilis was examined. Nine of the chemicals were toxic to the bacteria, with the minimal inhibitory concentration (MIC) ranging from 10-3 to 4.4M. The sensitivities of both organisms were similar, but the effect on E. coli was often bactericidal, while it was bacteriostatic for B. subtilis. Digoxin was not detectably toxic to either bacterial species. Amitriptyline and FeSO4 were relatively less toxic to the bacteria than to human cells. For seven chemicals, a highly significant linear regression was established between log MIC in bacteria and log of blood concentration, giving lethal and moderate/mild toxicity in humans, as well as with toxicity to human lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document