Poly I:C Stimulates Sca-1 Expression in Murine Bone Marrow and Increases the Number of Phenotypic Hematopoietic Stem Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2504-2504
Author(s):  
Russell Garrett ◽  
Gerd Bungartz ◽  
Alevtina Domashenko ◽  
Stephen G. Emerson

Abstract Abstract 2504 Poster Board II-481 Polyinosinic:polycytidlyic acid (poly I:C) is a synthetic double-stranded RNA used to mimic viral infections in order to study immune responses and to activate gene deletion in lox-p systems employing a Cre gene responsive to an Mx-1 promoter. Recent observations made by us and others have suggested hematopoietic stem cells, responding to either poly I:C administration or interferon directly, enter cell cycle. Twenty-two hours following a single 100mg intraperitoneal injection of poly I:C into 10-12 week old male C57Bl/6 mice, the mice were injected with a single pulse of BrdU. Two hours later, bone marrow was harvested from legs and stained for Lineage, Sca-1, ckit, CD48, IL7R, and BrdU. In two independent experiments, each with n = 4, 41 and 33% of Lin- Sca-1+ cKit+ (LSK) IL-7R- CD48- cells from poly I:C-treated mice had incorporated BrdU, compared to 7 and 10% in cells from PBS-treated mice. These data support recently published reports. Total bone marrow cellularity was reduced to 45 and 57% in the two experiments, indicating either a rapid death and/or mobilization of marrow cells. Despite this dramatic loss of hematopoietic cells from the bone marrow of poly I:C treated mice, the number of IL-7R- CD48- LSK cells increased 145 and 308% in the two independent experiments. Importantly, the level of Sca-1 expression increased dramatically in the bone marrow of poly I:C-treated mice. Both the percent of Sca-1+ cells and the expression level of Sca-1 on a per cell basis increased after twenty-four hours of poly I:C, with some cells acquiring levels of Sca-1 that are missing from control bone marrow. These data were duplicated in vitro. When total marrow cells were cultured overnight in media containing either PBS or 25mg/mL poly I:C, percent of Sca-1+ cells increased from 23.6 to 43.7%. Within the Sca-1+ fraction of poly I:C-treated cultures, 16.7% had acquired very high levels of Sca-1, compared to only 1.75% in control cultures. Quantitative RT-PCR was employed to measure a greater than 2-fold increase in the amount of Sca-1 mRNA in poly I:C-treated cultures. Whereas the numbers of LSK cells increased in vivo, CD150+/− CD48- IL-7R- Lin- Sca-1- cKit+ myeloid progenitors almost completely disappeared following poly I:C treatment, dropping to 18.59% of control marrow, a reduction that is disproportionately large compared to the overall loss of hematopoietic cells in the marrow. These cells are normally proliferative, with 77.1 and 70.53% accumulating BrdU during the 2-hour pulse in PBS and poly I:C-treated mice, respectively. Interestingly, when Sca-1 is excluded from the analysis, the percent of Lin- IL7R- CD48- cKit+ cells incorporating BrdU decreases following poly I:C treatment, in keeping with interferon's published role as a cell cycle repressor. One possible interpretation of these data is that the increased proliferation of LSK cells noted by us and others is actually the result of Sca-1 acquisition by normally proliferating Sca-1- myeloid progenitors. This new hypothesis is currently being investigated. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Toshio Suda

Abstract Abstract SCI-42 Tissue homeostasis over the life of an organism relies on both self-renewal and multipotent differentiation of stem cells. Hematopoietic stem cells (HSCs) are sustained in a specific microenvironment known as the stem cell niche. Adult HSCs are kept quiescent during the cell cycle in the endosteal niche of the bone marrow. Normal HSCs maintain intracellular hypoxia, stabilize the hypoxia-inducible factor-1a (HIF-1a) protein, and generate ATP by anaerobic metabolism. In HIF-1a deficiency, HSCs became metabolically aerobic, lost cell cycle quiescence, and finally became exhausted. An increased dose of HIF-1a protein in VHL-mutated HSCs and their progenitors induced cell cycle quiescence and accumulation of HSCs in the bone marrow (BM), which were not transplantable. This metabolic balance promotes HSC maintenance by limiting the production of reactive oxygen species (ROS), but leaves HSCs susceptible to changes in redox status (1). We have performed the metabolomic analysis in HSCs. Upregulation of pyruvate dehydrogenase kinases enhanced the glycolytic pathway, cell cycle quiescence, and stem cell capacity. Thus, HSCs directly utilize the hypoxic microenvironment to maintain their slow cell cycle by HIF-1a-dependent metabolism. Downregulation of mitochondrial metabolism might be reasonable, since it reduces ROS generation. On the other hand, at the time of BM transplantation, HSCs activate oxidative phosphorylation to acquire more ATP for proliferation. Autophagy also energizes HSCs by providing amino acids during transplantation. ATG (autophagy-related) 7 is essential for transplantation and metabolic homeostasis. The relationship between mitochondrial heat shock protein, mortalin, and metabolism in HSCs will also be discussed. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4117-4117
Author(s):  
Motoshi Ichikawa ◽  
Masataka Takeshita ◽  
Susumu Goyama ◽  
Takashi Asai ◽  
Eriko Nitta ◽  
...  

Abstract Transcription factor AML1/RUNX1, initially isolated from the t(8;21) chromosomal translocation in human leukemia, is essential for the development of multilineage hematopoiesis in mouse embryos. AML1 negatively regulates the number of immature hematopoietic cells in adult hematopoiesis, while it is required for megakaryocytic maturation and lymphocytic development. However, it remains yet to be determined how AML1 contributes to homeostasis of hematopoietic stem cells (HSCs). To address this issue, we analyzed in detail HSC function in the absence of AML1. Notably, cells in the Hoechst 33342 side population fraction and c-Kit-positive cells in the G0 cell cycle status were increased in number in AML1-deficient bone marrow, which suggests enrichment of quiescent HSCs. We also found an increase in HSC number within the AML1-deficient bone marrow using limiting dilution bone marrow transplantation assays. Thus, the number of quiescent HSCs is negatively regulated by AML1, loss of which may result in accumulation of leukemic stem cell pool in AML1-related leukemia. To identify mechanisms through which functional loss of AML1 exerts leukemogenic potential, we focused on the AML1-Evi-1 chimeric protein, which is generated by the t(3;21) chromosomal translocation and disturbs the normal function of AML1. We introduced AML1-Evi-1 and its mutants into murine bone marrow cells, and evaluated hematopoietic cell transformation by colony replating assays. The transforming activity of AML1-Evi-1 was impaired when any of the major functional domains of AML1-Evi-1 was lost. Moreover, overexpression of Evi-1 could not transform AML1-deleted bone marrow cells, suggesting that fusion of AML1 and Evi-1, rather than AML1 suppression and Evi-1 overexpression, is essential for AML1-Evi-1 leukemogenesis. Intriguingly, among the hematopoietic progenitor cell fractions, AML1-Evi-1 could transform only the uncommitted, immature hematopoietic cells, which contrasts with MLL-ENL, a chimeric protein generated in t(11;19) leukemia. AML1-Evi-1 transformed cells show a surface marker profile different from that of the cells transformed by AML1-MTG8/ETO, another leukemic gene product that also perturbs AML1 function. These results provide a valuable clue to a distinct mechanism determined by the Evi-1 moiety in the AML1-Evi-1 leukemogenesis and to a role of AML1 loss in the self-renewal of leukemic stem cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2533-2533
Author(s):  
Benjamin Povinelli ◽  
Michael Baranello ◽  
Kathleen Kokolus ◽  
Michael Nemeth

Abstract Abstract 2533 Poster Board II-510 Multiple members of the Wnt family of ligands have been implicated in the regulation of self-renewal and proliferation of hematopoietic stem cells (HSCs). Previously, we have observed that ex vivo expansion of HSCs in the presence of recombinant murine Wnt5a (rmWnt5a) resulted in increased hematopoietic repopulation. Based on these data, we hypothesized that Wnt5a is necessary for normal function of HSCs and hematopoietic progenitors (HPCs). Since Wnt5a deficiency (Wnt5a−/−) is perinatal lethal in vivo, we tested this hypothesis using in vitro Dexter stroma cultures established using whole bone marrow. To determine the ability of Wnt5a to support hematopoiesis in the context of the adult hematopoietic microenvironment, we cultured lineage-negative (lin−) HPCs on irradiated bone marrow stroma in the presence of 5 μg/ml Wnt5a-neutralizing antibody (Wnt5a-Ab). After two weeks, we observed that hematopoietic cells cultured on untreated stroma contained 4.8-fold more myeloid CFU (33.1 ± 12.3 CFU/104 cells) than cells cultured on Wnt5a-Ab stroma (6.9 ± 0.7 CFU; n = 3, p < .01). A similar difference was observed after 4 weeks (control: 16.0 ± 7.2 CFU/104 cells; Wnt5a-Ab: 1.3 ± 2.3 CFU; n = 3; p = .03). In the converse experiment, lin− HPCs were cultured on stroma in the presence of Wnt5a conditioned medium (Wnt5a-CM). We observed after two weeks that hematopoietic cells cultured on stroma with control-CM contained 4.4-fold more myeloid CFU (29.8 ± 13.5 CFU/104 cells) than cells cultured on Wnt5a-CM stroma (6.8 ± 2.2 CFU; n = 4, p = .02). Together, these data indicate that Wnt5a-mediated signaling must be balanced in order for normal hematopoiesis to occur. To determine if the effects of Wnt5a required the presence of developmental stage-specific factors, we established stroma cultures from fetal spleens harvested from E17.5 Wnt5a−/− mice and littermate controls and seeded them with lin− HPCs. We observed that hematopoietic cells cultured on control fetal spleen stroma contained 12.5-fold more myeloid CFU (72.6 ± 21.6 CFU/104 cells) than cells cultured on Wnt5a−/− fetal spleen stroma (5.8 ± 5.8; n = 6, p < .001) after two weeks. These data indicate that the effect of Wnt5a on hematopoietic cells is independent of the developmental stage of the surrounding microenvironment. To determine if the effects of Wnt5a were due to regulation of proliferation or differentiation of hematopoietic cells, we cultured bone marrow cells in cytokine-supplemented methylcellulose in the presence of 300 ng/ml rmWnt5a. We observed a 5.5-fold decrease in the number of myeloid CFU formed in cultures with rmWnt5a (14.1 ± 3.8/104 cells) compared to control (77.6 ± 5.1 CFU; n = 3; p < .001), suggesting that Wnt5a could be regulating both processes. In the converse experiment, we cultured bone marrow cells for 4 days in cytokine-supplemented serum-free media with the same dose of rmWnt5a after which equal numbers of cells were plated in rmWnt5a-free methylcellulose. We did not observe any difference in CFU frequency between control (19.3 ± 4.2 CFU/104 cells) and rmWnt5a (24.0 ± 2.6 CFU; n = 3) cultures, indicating that treatment with rmWnt5a inhibited hematopoietic proliferation but not differentiation. To identify the mechanism by which Wnt5a regulates HSC and HPC proliferation, we analyzed potential Wnt5a-mediated signaling pathways. We observed that Wnt5a induced intracellular Ca2+ (iCa2+) flux in HSCs (defined as lin−, Sca-1HI, c-kitHI; LSK). Previous studies have shown that Wnt5a-mediated induction of iCa2+ can result in activation of the NFAT family of transcription factors. Since NFATc1 promotes quiescence of hair follicle stem cells and is expressed in HSCs, we hypothesized that the effects of Wnt5a required activation of NFAT family members. We cultured bone marrow cells with Wnt5a-CM in the presence of cyclosporine A (CsA), which inhibits activation of NFAT factors. In agreement with our earlier findings, we observed that culturing bone marrow cells in Wnt5a-CM increased the percentage of quiescent (defined as Ki-67-) LSKCD34− HSCs (79.7 ± 3.3%) compared to control-CM (55.0 ± 1.6%; n = 3; p < .001). This increase was inhibited by CsA (69.4 ± 2.6%; n = 3; p = .01 compared to Wnt5a-CM alone). In conclusion, our data point to a role for Wnt5a in regulating HSC and HPC proliferation and that this function may require the activation of NFAT transcription factors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 90 (10) ◽  
pp. 3884-3892 ◽  
Author(s):  
Keiko Ito ◽  
Yasuji Ueda ◽  
Masaki Kokubun ◽  
Masashi Urabe ◽  
Toshiya Inaba ◽  
...  

Abstract To overcome the low efficiency of gene transfer into hematopoietic cells, we developed a novel system for selective expansion of transduced cells. To this end, we constructed a chimeric cDNA (GCRER) encoding the fusion protein between the granulocyte colony-stimulating factor receptor (G-CSFR) and the hormone-binding domain (HBD) of the estrogen receptor (ER) as a selective amplifier gene. Use of the intracellular signaling pathway of G-CSFR was considered to be appropriate, because G-CSF has the ability not only to stimulate the neutrophil production, but also to expand the hematopoietic stem/progenitor cell pool in vivo. To activate the exogenous G-CSFR signal domain selectively, the estrogen/ER-HBD system was used as a molecular switch in this study. When the GCRER gene was expressed in the interleukin-3 (IL-3)–dependent murine cell line, Ba/F3, the cells showed IL-3–independent growth in response to G-CSF or estrogen. Moreover, the Ba/F3 cells transfected with the Δ(5-195)GCRER, whose product lacks the extracellular G-CSF–binding domain, did not respond to G-CSF, but retained the ability for estrogen-dependent growth. Further, murine bone marrow cells transduced with the GCRER or Δ(5-195)GCRER gene with retroviral vectors formed a significant number of colonies in response to estrogen, as well as G-CSF, whereas estrogen did not stimulate colony formation by untransduced murine bone marrow cells. It is noteworthy that erythroid colonies were apparently formed by the bone marrow cells transduced with the GCRER gene in the presence of estrogen without the addition of erythropoietin, suggesting that the signals from the G-CSFR portion of the chimeric molecules do not preferentially induce neutrophilic differentiation, but just promote the differentiation depending on the nature of the target cells. We speculate that when the selective amplifier genes are expressed in the primitive hematopoietic stem cells, the growth signal predominates and that the population of transduced stem cells expands upon estrogen treatment, even if some of the cells enter the differentiation pathway. The present study suggests that this strategy is applicable to the in vivo selective expansion of transduced hematopoietic stem cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1200-1200
Author(s):  
Hui Yu ◽  
Youzhong Yuan ◽  
Xianmin Song ◽  
Feng Xu ◽  
Hongmei Shen ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are significantly restricted in their ability to regenerate themselves in the irradiated hosts and this exhausting effect appears to be accelerated in the absence of the cyclin-dependent kinase inhibitor (CKI), p21. Our recent study demonstrated that unlike p21 absence, deletion of the distinct CKI, p18 results in a strikingly positive effect on long-term engraftment owing to increased self-renewing divisions in vivo (Yuan et al, 2004). To test the extent to which enhanced self-renewal in the absence of p18 can persist over a prolonged period of time, we first performed the classical serial bone marrow transfer (sBMT). The activities of hematopoietic cells from p18−/− cell transplanted mice were significantly higher than those from p18+/+ cell transplanted mice during the serial transplantation. To our expectation, there was no detectable donor p18+/+ HSC progeny in the majority (4/6) of recipients after three rounds of sBMT. However, we observed significant engraftment levels (66.7% on average) of p18-null progeny in all recipients (7/7) within a total period of 22 months. In addition, in follow-up with our previous study involving the use of competitive bone marrow transplantation (cBMT), we found that p18−/− HSCs during the 3rd cycle of cBMT in an extended long-term period of 30 months were still comparable to the freshly isolated p18+/+ cells from 8 week-old young mice. Based on these two independent assays and the widely-held assumption of 1-10/105 HSC frequency in normal unmanipulated marrow, we estimated that p18−/− HSCs had more than 50–500 times more regenerative potential than p18+/+ HSCs, at the cellular age that is equal to a mouse life span. Interestingly, p18 absence was able to significantly loosen the accelerated exhaustion of hematopoietic repopulation caused by p21 deficiency as examined in the p18/p21 double mutant cells with the cBMT model. This data directly indicates the opposite effect of these two molecules on HSC durability. To define whether p18 absence may override the regulatory mechanisms that maintain the HSC pool size within the normal range, we performed the transplantation with 80 highly purified HSCs (CD34-KLS) and then determined how many competitive reconstitution units (CRUs) were regenerated in the primary recipients by conducting secondary transplantation with limiting dilution analysis. While 14 times more CRUs were regenerated in the primary recipients transplanted with p18−/−HSCs than those transplanted with p18+/+ HSCs, the level was not beyond that found in normal non-transplanted mice. Therefore, the expansion of HSCs in the absence of p18 is still subject to some inhibitory regulation, perhaps exerted by the HSC niches in vivo. Such a result was similar to the effect of over-expression of the transcription factor, HoxB4 in hematopoietic cells. However, to our surprise, the p18 mRNA level was not significantly altered by over-expression of HoxB4 in Lin-Sca-1+ cells as assessed by real time PCR (n=4), thereby suggesting a HoxB4-independent transcriptional regulation on p18 in HSCs. Taken together, our current results shed light on strategies aimed at sustaining the durability of therapeutically transplanted HSCs for a lifetime treatment. It also offers a rationale for the feasibility study intended to temporarily target p18 during the early engraftment for therapeutic purposes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 861-861 ◽  
Author(s):  
Viktor Janzen ◽  
Heather E. Fleming ◽  
Michael T. Waring ◽  
Craig D. Milne ◽  
David T. Scadden

Abstract The processes of cell cycle control, differentiation and apoptosis are closely intertwined in controlling cell fate during development and in adult homeostasis. Molecular pathways connecting these events in stem cells are poorly defined and we were particularly interested in the cysteine-aspartic acid protease, Caspase-3, an ‘executioner’ caspase also implicated in the regulation of the cyclin dependent kinase inhibitors, p21Cip1 and p27Kip1. These latter proteins are known to participate in primitive hematopoietic cell cycling and self-renewal. We demonstrated high levels of Caspase-3 mRNA and protein in immunophenotypically defined mouse hematopoietic stem cells (HSC). Using mice engineered to be deficient in Caspase-3, we observed a consistent reduction of lymphocytes in peripheral blood counts and a slight reduction in bone marrow cellularity. Notably, knockout animals had an increase in the stem cell enriched Lin−cKit+Sca1+Flk2low (LKSFlk2lo) cell fraction. The apoptotic rates of LKS cells under homeostatic conditions as assayed by the Annexin V assay were not significantly different from controls. However, in-vitro analysis of sorted LKS cells revealed a reduced sensitivity to apoptotic cell death in absence of Caspase-3 under conditions of stress (cytokine withdrawal or gamma irradiation). Primitive hematopoietic cells displayed a higher proliferation rate as demonstrated by BrdU incorporation and a significant reduction in the percentage of cells in the quiescent stage of the cell cycle assessed by the Pyronin-Y/Hoechst staining. Upon transplantation, Caspase-3−/− stem cells demonstrated marked differentiation abnormalities with significantly reduced ability to differentiate into multiple hematopoietic lineages while maintaining an increased number of primitive cells. In a competitive bone marrow transplant using congenic mouse stains Capase-3 deficient HSC out-competed WT cells at the stem cell level, while giving rise to comparable number of peripheral blood cells as the WT controls. Transplant of WT BM cells into Caspase-3 deficient mice revealed no difference in reconstitution ability, suggesting negligible effect of the Caspase-3−/− niche microenvironment to stem cell function. These data indicate that Caspase-3 is involved in the regulation of differentiation and proliferation of HSC as a cell autonomous process. The molecular bases for these effects remain to be determined, but the multi-faceted nature of the changes seen suggest that Caspase-3 is central to multiple regulatory pathways in the stem cell compartment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1478-1478
Author(s):  
Kathryn M. Shinnick ◽  
Kelly A. Barry ◽  
Elizabeth A. Eklund ◽  
Thomas J. McGarry

Abstract Abstract 1478 Poster Board I-501 Hematopoietic stem cells supply the circulation with mature blood cells throughout life. Progenitor cell division and differentiation must be carefully balanced in order to supply the proper numbers and proportions of mature cells. The mechanisms that control the choice between continued cell division and terminal differentiation are incompletely understood. The unstable regulatory protein Geminin is thought to maintain cells in an undifferentiated state while they proliferate. Geminin is a bi-functional protein. It limits the extent of DNA replication to one round per cell cycle by binding and inhibiting the essential replication factor Cdt1. Loss of Geminin leads to replication abnormalities that activate the DNA replication checkpoint and the Fanconi Anemia (FA) pathway. Geminin also influences patterns of cell differentiation by interacting with Homeobox (Hox) transcription factors and chromatin remodeling proteins. To examine how Geminin affects the proliferation and differentiation of hematopoietic stem cells, we created a mouse strain in which Geminin is deleted from the proliferating cells of the bone marrow. Geminin deletion has profound effects on all three hematopoietic lineages. The production of mature erythrocytes and leukocytes is drastically reduced and the animals become anemic and neutropenic. In contrast, the population of megakaryocytes is dramatically expanded and the animals develop thrombocytosis. Interestingly, the number of c-Kit+ Sca1+ Lin- (KSL) stem cells is maintained, at least in the short term. Myeloid colony forming cells are also preserved, but the colonies that grow are smaller. We conclude that Geminin deletion causes a maturation arrest in some lineages and directs cells down some differentiation pathways at the expense of others. We are now testing how Geminin loss affects cell cycle checkpoint pathways, whether Geminin regulates hematopoietic transcription factors, and whether Geminin deficient cells give rise to leukemias or lymphomas. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2308-2308
Author(s):  
Laura R Goldberg ◽  
Mark S Dooner ◽  
Mandy Pereira ◽  
Michael DelTatto ◽  
Elaine Papa ◽  
...  

Abstract Abstract 2308 Hematopoietic stem cell biologists have amassed a tremendous depth of knowledge about the biology of the marrow stem cell over the past few decades, facilitating invaluable basic scientific and translational advances in the field. Most of the studies to date have focused on highly purified populations of marrow cells, with emphasis placed on the need to isolate increasingly restricted subsets of marrow cells within the larger population of resident bone marrow cells in order to get an accurate picture of the true stem cell phenotype. Such studies have led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to homogeneity. However, work from our laboratory, focusing on the stem cell potential in un-separated whole bone marrow (WBM), supports an alternate view of marrow stem cell biology in which a large population of marrow stem cells are actively cycling, continually changing phenotype with cell cycle transit, and therefore, cannot be purified to homogeneity. Our studies separating WBM into cell cycle-specific fractions using Hoechst 33342/Pyronin Y or exposing WBM to tritiated thymidine suicide followed by competitive engraftment into lethally irradiated mice revealed that over 50% of the long-term multi-lineage engraftment potential in un-separated marrow was due to cells in S/G2/M. This is in stark contrast to studies showing that highly purified stem cell populations such as LT-HSC (Lineage–c-kit+sca-1+flk2−) engraft predominantly when in G0. Additionally, by performing standard isolation of a highly purified population of stem cells, SLAM cells (Lineage–c-kit+sca-1+flk2−CD150+CD41−CD48−), and testing the engraftment potential of different cellular fractions created and routinely discarded during this purification process, we found that 90% of the potential engraftment capacity in WBM was lost during conventional SLAM cell purification. Incubation of the Lineage-positive and Lineage-negative fractions with tritiated thymidine, a DNA analogue which selectively kills cells traversing S-phase, led to dramatic reductions in long-term multi-lineage engraftment potential found within both cellular fractions (over 95% and 85% reduction, respectively). This indicates that the discarded population of stem cells during antibody-based stem cell purification is composed largely of cycling cells. In sum, these data strongly support that 1) whole bone marrow contains actively cycling stem cells capable of long-term multi-lineage engraftment, 2) these actively cycling marrow stem cells are lost during the standard stem cell purification strategies, and 3) the protean phenotype of actively cycling cells as they transit through cell cycle will render cycling marrow stem cells difficult to purify to homogeneity. Given the loss of a large pool of actively cycling HSC during standard stem cell isolation techniques, these data underscore the need to re-evaluate the total hematopoietic stem cell pool on a population level in addition to a clonal level in order to provide a more comprehensive study of HSC biology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 341-341 ◽  
Author(s):  
Satish Khurana ◽  
Catherine M. Verfaillie

Osteoblasts are one of the important cellular components of the niche for hematopoietic stem cells (HSCs) in mammalian bone marrow (BM). Integrin receptors not only play a key role in HSC adhesion within the BM niche but also transfer regulatory signals from the microenvironment to HSCs. Periostin (Postn or osteoblast specific factor-1; OSF-1) is expressed in osteoblasts in addition to many other tissues, and acts as a ligand for Integrin-αvβ3 (ITGAV-B3). We identified POSTN as an important regulator of the cell cycle in adult murine HSCs. POSTN inhibited culture induced proliferation of HSCs thereby decreasing the total number of cells following 2-5 day culture of primitive HSCs, identified as CD150+CD48-Lin-Sca-1+c-kit+ (CD150 KLS) cells with SCF and TPO, while increasing the proportion of long-term (LT-) HSCs. Culture for 5 days with POSTN decreased the short-term (ST-) engraftment of progeny of 200 CD150 KLS cells, while significantly increasing LT- engraftment of the donor derived cells. A significant fraction of CD150 KLS cells expressed ITGAV as well as ITGB3. POSTN did not affect proliferation of HSCs in vitro following blocking of ITGAV with neutralizing antibodies. Among the important cell cycle regulators, we found an increase in p27kip1 expression in HSCs. Preliminary studies on possible signaling mechanisms involved, showed that POSTN inhibits Akt phosphorylation, known to mediate inhibition of both expression and activation of p27Kip1. Intravenous infusion of recombinant POSTN protein significantly decreased proliferation of hematopoietic progenitors as shown by Brdu incorporation and Hoechst/Pyronin staining. Interestingly, POSTN infusion also led to an increase in the number of KLS as well as CD150 KLS cells in the BM. Studies on characterization of the hematopoietic system of Postn-/- mice are underway. To further determine the role of ITGAV in HSCs, we used blocking antibodies against ITGAV and performed homing and engraftment studies. No effect on either homing potential or engraftment of ST- and LT- engraftment was seen. However, the competitive repopulation of ITGAV- CD150 KLS cells was significantly lower that that of ITGAV+ CD150 KLS cells (isolated using non-blocking antibodies). Therefore, our studies confirm the importance of ITGAV expression on primitive HSCs as well as presents POSTN as an important cell cycle regulator in the hematopoietic system. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 600-600
Author(s):  
Manabu Matsunawa ◽  
Ryo Yamamoto ◽  
Masashi Sanada ◽  
Aiko Sato ◽  
Yusuke Shiozawa ◽  
...  

Abstract Frequent pathway mutation involving multiple components of the RNA splicing machinery is a cardinal feature of myeloid neoplasms showing myeloid dysplasia, in which the major mutational targets include U2AF35, ZRSR2, SRSF2 and SF3B1. Among these, SF3B1 mutations were strongly associated with MDS subtypes characterized by increased ring sideroblasts, such as refractory anemia and refractory cytopenia with multiple lineage dysplasia with ring sideroblasts, suggesting the critical role of SF3B1 mutations in these MDS subtypes. However, currently, the molecular mechanism of SF3B1mutation leading to the ring sideroblasts formation and MDS remains unknown. The SF3B1 is a core component of the U2-small nuclear ribonucleoprotein (U2 snRNP), which recognizes the 3′ splice site at intron–exon junctions. It was demonstrated that Sf3b1 null mice were shown to be embryonic lethal, while Sf3b1 +/- mice exhibited various skeletal alterations that could be attributed to deregulation of Hox gene expression due to haploinsufficiency of Sf3b1. However, no detailed analysis of the functional role of Sf3b1 in hematopoietic system in these mice has been performed. So, to clarify the role of SF3B1 in hematopoiesis, we investigated the hematological phenotype of Sf3b1 +/- mice. There was no significant difference in peripheral blood counts, peripheral blood lineage distribution, bone marrow total cellularity or bone marrow lineage composition between Sf3b1 +/+ and Sf3b1 +/- mice. Morphologic abnormalities of bone marrow and increased ring sideroblasts were not observed. However, quantitative analysis of bone marrow cells from Sf3b1 +/- mice revealed a reduction of the number of hematopoietic stem cells (CD34 neg/low, cKit positive, Sca-1 positive, lineage-marker negative: CD34-KSL cells) measured by flow cytometry analysis, compared to Sf3b1 +/+ mice. Whereas examination of hematopoietic progenitor cells revealed a small decrease in KSL cell populations and megakaryocyte - erythroid progenitors (MEP) in Sf3b1 +/- mice, and common myeloid progenitors (CMP), granulocyte - monocyte progenitors (GMP) and common lymphoid progenitors (CLP) remained unchanged between Sf3b1 +/+ and Sf3b1 +/- mice. In accordance with the reduced number of hematopoietic stem cells in Sf3b1 +/- mice, the total number of colony-forming unit generated from equal number of whole bone marrow cells showed lower colony number in Sf3b1 +/- mice in vitro. Competitive whole bone marrow transplantation assay, which irradiated recipient mice were transplanted with donor whole bone marrow cells from Sf3b1 +/+ or Sf3b1 +/- mice with an equal number of competitor bone marrow cells, revealed impaired competitive whole bone marrow reconstitution capacity of Sf3b1 +/- mice in vivo. These data demonstrated Sf3b1 was required for hematopoietic stem cells maintenance. To further examine the function of hematopoietic stem cells in Sf3b1 +/- mice, we performed competitive transplantation of purified hematopoietic stem cells from Sf3b1 +/+ or Sf3b1 +/- mice into lethally irradiated mice together with competitor bone marrow cells. Sf3b1 +/- progenitors showed reduced hematopoietic stem cells reconstitution capacity compared to those from Sf3b1 +/+ mice. In serial transplantation experiments, progenitors from Sf3b1 +/- mice showed reduced repopulation ability in the primary bone marrow transplantation, which was even more pronounced after the second bone marrow transplantation. Taken together, these data demonstrate that Sf3b1 plays an important role in normal hematopoiesis by maintaining hematopoietic stem cell pool size and regulating hematopoietic stem cell function. To determine the molecular mechanism underlying the observed defect in hematopoietic stem cells of Sf3b1 +/- mice, we performed RNA-seq analysis. We will present the results of our biological assay and discuss the relation of Sf3b1 and hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document