Phase I Study of IMGN901, Used as Monotherapy, in Patients with Heavily Pre-Treated CD56-Positive Multiple Myeloma - A Preliminary Safety and Efficacy Analysis.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2883-2883 ◽  
Author(s):  
Asher Chanan-Khan ◽  
Jeffrey Wolf ◽  
Mecide Gharibo ◽  
Sundar Jagannath ◽  
Nikhil C. Munshi ◽  
...  

Abstract Abstract 2883 Poster Board II-859 Background: IMGN901 (huN901-DM1/BB-10901) is a novel anticancer agent consisting of a potent cytotoxic maytansinoid, DM1, attached to a CD56-binding monoclonal antibody, huN901, using an engineered linker. Once bound to CD56 on a cancer cell, the conjugate is internalized and releases DM1. About 70% of multiple myeloma (MM) cases have surface expression of CD56. In preclinical settings, IMGN901 showed significant in vitro and in vivo anti-myeloma activity as a single agent and in combination with approved drugs such as lenalidomide. Objectives: To determine the maximum tolerated dose (MTD), pharmacokinetics (PK), and activity of IMGN901, used as monotherapy, in patients with MM. Methods: Patients with CD56+ relapsed or relapsed/refractory MM receive a single IV infusion of IMGN901 on 2 consecutive weeks every 3 weeks. Patients are enrolled into each dose level in cohorts of 3, with dose-limiting toxicity (DLT) triggering cohort expansion. The European Bone Marrow Transplant (EBMT) criteria were used for response assessment. Results: Twenty-three CD56+ MM patients have received IMGN901 at doses ranging from 40 to 140 mg/m2/week. Most of these 23 patients had been treated with 6 or more chemotherapy regimens prior to study entry. Two of 6 patients treated at the 140 mg/m2/week dose experienced DLT (grade 3 fatigue and grade 3 acute renal failure) and a lower dose has been defined as the MTD. Commonly reported adverse events that were at least possibly related to IMGN901 were fatigue, increased aspartate aminotransferase, increased uric acid, sensory neuropathy and headache. None of the patients experienced serious hypersensitivity reactions or demonstrated a humoral response against either the antibody or DM1 component of IMGN901. Sustained partial response (PR) was documented in 1 patient treated at 140 mg/m2/week and 3 minor responses (MR) were reported in 1 patient each at doses of 60, 90, and 112 mg/m2/week. Of the 23 patients receiving any dose level of IMGN901, 8 remained on IMGN901 treatment for at least 15 weeks. Five of these 8 patients continued treatment on IMGN901 for at least 24 weeks, and two of these 5 patients remained on IMGN901 for at least 50 weeks. Preliminary PK results indicate an approximately linear relationship between dose and observed maximal serum concentration. Conclusion: This is the first study of IMGN901 in patients with MM. The MTD of this agent in MM patients is now defined. Our experience with IMGN901 in this clinical trial demonstrates an overall favorable safety profile. Although the primary objective of this clinical trial was to determine the MTD of single agent IMGN901, exciting single agent activity was observed in heavily pretreated MM patients. This is particularly encouraging as the duration of treatment with IMGN901 in some patients was longer than duration of treatment with prior regimens of approved agents. Clinical observations noted here (including single agent efficacy and the favorable toxicity profile) as well as findings from preclinical combination studies warrant continued investigation of this novel agent in patients with MM especially in combination with approved anti-myeloma agents/regimens such as lenalidomide and dexamethasone. Disclosures: Chanan-Khan: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Immunogen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Jagannath:Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria; Merck: Honoraria. Miller:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Guild:ImmunoGen, Inc: Employment. Zildjian:ImmunoGen, Inc: Employment. Qin:ImmunoGen, Inc.: Employment. O'Leary:ImmunoGen, Inc.: Employment.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Ralf Buettner ◽  
Le Xuan Truong Nguyen ◽  
Corey James Morales ◽  
Lisa S Chen ◽  
Timothy Synold ◽  
...  

Relapse of acute myeloid leukemia (AML) is attributed to the persistence of quiescent leukemia stem cells (LSCs). Bcl-2 inhibition has been shown to target primitive leukemia progenitors. Venetoclax (VEN) is a FDA-approved Bcl-2-selective inhibitor for the treatment of AML. Although the activity of single agent VEN in AML patients (pts.) is modest, clinical efficacy in newly diagnosed, older pts. unfit for intense chemotherapy has been shown when VEN is combined with the hypomethylating agents (HMAs) azacytidine and decitabine or with low-dose nucleoside analog cytarabine. We have recently shown that VEN in combination with HMAs augments oxidative stress in AML cells and provided a molecular mechanism for the VEN-HMA-regulated NF-E2-related factor 2 (Nrf2) antioxidant pathway that could explain the results observed in early clinical studies in AML. Although about 70% of pts. initially respond to these VEN treatment regimens, about 30% of pts. do not and diminished efficacy of VEN combination treatments have been observed in pts. harboring poor-prognosis markers such as FLT3-ITD. In addition, future relapse of a percentage of pts. treated with VEN combinations is expected. Thus, novel treatment options for are urgently needed. We previously reported that the ribose containing, RNA-directed nucleoside analog 8-chloro-adenosine (8-Cl-Ado) demonstrates cytotoxic activity against AML cells and LSCs in vitro and in vivo, without significantly affecting normal hematopoietic stem cells. Importantly, our initial, unpublished results from a phase I/II clinical trial with single agent 8-Cl-Ado in pts. with refractory/relapsed AML demonstrate encouraging clinical benefits. Moreover, we have reported that FLT3-ITD AML is particularly sensitive to 8-Cl-Ado, thus suggesting 8-Cl-Ado plus VEN as a potential novel therapeutic regimen for treatment of AML. We here report that the VEN plus 8-Cl-Ado combination inhibited in vitro growth and induced apoptosis in AML primary cells, LSCs and cell lines significantly more compared to treatment with the individual agents. For in vitro cell growth studies, combination indices of <1 for all experimental and calculated drug concentrations demonstrated strong synergy between the two drugs in 2 human AML cell lines (MV4-11 and KG-1a) and in AML cells isolated from 2 pts. Moreover, immune compromised NSG mice engrafted with FLT3-ITD MV4-11 cells survived significantly longer when treated with VEN (20 mg·kg‒1·day‒1, daily oral) plus 8-Cl-Ado (50 mg·kg‒1·day‒1; osmotic pump), as compared to single agent or vehicle-treated mice (p<0.006, VEN+8-Cl-Ado vs. 8-Cl-Ado; p<0.001 VEN+8-Cl-Ado vs. VEN). LSCs depend on amino acid metabolism-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for energy production. VEN is known to target LSCs through inhibition of OXPHOS by targeting amino acid uptake/metabolism. We report here that 8-Cl-Ado inhibited the FAO pathway and down-regulated the oxygen consumption rate (OCR), a marker for OXPHOS, in LSCs. However, whereas 500 nM of 8-Cl-Ado was sufficient to induce MV4-11 growth inhibition, 1 microM of 8-Cl-Ado was needed for maximum inhibitory effect on FAO. We also report that 8-Cl-Ado increased expression of the anti-apoptotic protein p53. It was previously reported that p53 induces FAO in LSCs. Knockdown of p53 by siRNA augmented the inhibitory effect of 8-Cl-Ado on FAO and OCR. Importantly, addition of VEN could completely overcome the p53-induced activation of FAO and OCR. Mechanistically, we show that 8-Cl-Ado inhibited ribosomal RNA (rRNA) synthesis, a prerequisite for cellular proliferation, through down-regulation of the transcription initiation factor 1 (TIF-IA) protein. Since TIF-1A negatively regulates p53 expression, the inhibition of TIF-1A by 8-Cl-Ado resulted in up-regulation of p53 and subsequent p53-induced upregulation of FAO and OCR, thus diminishing the suppressive effects of 8-Cl-Ado on FAO and OCR. We further show that the VEN plus 8-Cl-Ado combination strongly induced p53 signaling, as shown by activation and inhibition of downstream p21 and PCNA proteins, respectively. This combination also augmented DNA fragmentation and apoptosis in LSCs. Thus, our data suggest that the synergy seen in AML with the VEN plus 8-Cl-Ado combination can be explained at least in part due to augmented inhibition of FAO and OXPHOS and represents a promising novel treatment for AML. Disclosures Pullarkat: Dova: Consultancy, Honoraria; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Servier: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genetech: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AbbVie, Inc.: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Marcucci:Iaso Bio: Membership on an entity's Board of Directors or advisory committees; Abbvie: Speakers Bureau; Novartis: Speakers Bureau; Pfizer: Other: Research Support (Investigation Initiated Clinical Trial); Merck: Other: Research Support (Investigation Initiated Clinical Trial); Takeda: Other: Research Support (Investigation Initiated Clinical Trial). Rosen:Celgene: Speakers Bureau; NeoGenomics: Consultancy; Seattle Genetics: Consultancy; Aileron Therapeutics: Consultancy; Novartis: Consultancy; paradigm Medical Communications: Speakers Bureau; Abbvie: Speakers Bureau; Pebromene: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2095-2095
Author(s):  
Zezhou Wang ◽  
Jaehyun Choi ◽  
Peter Dove ◽  
Chunlei Wang ◽  
Aaron D. Schimmer ◽  
...  

Abstract Although recent advances in the development of multiple myeloma (MM) therapies such as proteasome inhibitors and immunomodulatory agents have improved patient outcomes, MM remains incurable. Additional therapeutic agents with high efficacy, low toxicity and the convenience of oral administration are in high demand. BET inhibitors, such as JQ-1, have been considered as potential therapeutic agents for MM. In the present study, we report that TTI-281, an orally bioavailable BET inhibitor, displays anti-MM activity with a low toxicity profile in preclinical studies. First, TTI-281 was tested for binding and anti-tumor activity in vitro. BROMOscan and AlphaScreen assays demonstrated that TTI-281 bound to bromodomains of BRD2/BRD3/BRD4 with Kd values less than 10 nM. In MTS assays, TTI-281 inhibited the growth of MM cell lines (MM.1s, NCIH929, and RPMI-8826) with cell growth-inhibition (IC50) values less than 300 nM. Next, in vitro ADME screening and in vivo PK studies were conducted. Permeability assays using murine gastrointestinal epithelial cells indicated that TTI-281 had good permeability with little efflux liability (efflux ratio <1), suggesting favorable properties for oral absorption. Indeed, TTI-281 displayed excellent oral bioavailability in both mice and rats (93.1% and 91.8%, respectively). In addition, TTI-281 did not interfere with the metabolism of representative CYP isozyme substrates at concentrations up to 50 μM in pooled human liver microsomes. Data also suggested minimal potential for drug-drug interactions, allowing for the possible combination with first-line therapy to improve therapeutic and survival outcomes. Finally, TTI-281 was tested for anti-myeloma efficacy and tolerability in vivo. NOD-SCID mice (n=10/group) subcutaneously engrafted with the human myeloma cell line MM.1S were treated orally once daily for 21 days with different doses of TTI-281, vehicle control or the benchmark drug carfilzomib. TTI-281 reduced tumor growth in a dose-dependent manner in this MM xenograft model. At 30 mg/kg/day, TTI-281 led to a statistically significant decrease in tumor growth compared with the vehicle control and carfilzomib (reduced tumor volume: 67% after TTI-281 treatment vs 33% after carfilzomib treatment, p<0.0003). Furthermore, TTI-281 treatment was well tolerated, with no effect on body weight or other obvious toxicity. In summary, our preclinical data suggest that the orally available BET inhibitor TTI-281 has an excellent efficacy and safety profile, highlighting its potential as a promising drug candidate for myeloma therapy. Disclosures Wang: Trillium Therapeutics: Employment, Patents & Royalties. Choi:Trillium Therapeutics: Employment. Dove:Trillium Therapeutics: Employment, Patents & Royalties. Wang:Trillium Therapeutics: Employment. Schimmer:Novartis: Honoraria. Petrova:Trillium Therapeutics Inc: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Uger:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Slassi:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1856-1856 ◽  
Author(s):  
Suzanne Lentzsch ◽  
Amy O’Sullivan ◽  
Silvana Lalo ◽  
Carrie Kruppa ◽  
Diane Gardner ◽  
...  

Abstract Abstract 1856 Poster Board I-882 Background: Lenalidomide is an analog of thalidomide that has shown significant clinical activity in patients with relapsed or refractory multiple myeloma (MM), both as a single agent and in combination with dexamethasone. Bendamustine is a bifunctional alkylating agent that is approved for the treatment of chronic lymphocytic leukemia and indolent non-Hodgkin's lymphoma that has progressed during or relapsed within 6 months following a rituximab-containing regimen. Bendamustine combined with lenalidomide may be an effective treatment option for MM patients, particularly those with preexisting or bortezomib-induced neuropathy. Our primary objective was to determine the maximum tolerated dose (MTD) and safety profile of bendamustine and lenalidomide when administered with dexamethasone for patients with relapsed or refractory MM. Methods: Patients aged ≥18 years with confirmed, measurable stage 2 or 3 MM that was refractory to or progressed after 1 or more prior therapies, including lenalidomide, received bendamustine by intravenous infusion on days 1 and 2, oral lenalidomide on days 1–21, and oral dexamethasone on days 1, 8, 15, and 22 of each 28-day cycle. Treatment was continued until a plateau of best response, as determined by the IBMTR/ABMTR, was reached. Study drug doses were escalated through 4 levels (Table), with 3–6 patients enrolled at each level depending on the rate of dose-limiting toxicity (DLT). After determining the MTD, up to an additional 12 patients will be enrolled in an MTD expansion arm to better evaluate toxicity and clinical activity. Secondary endpoints included preliminary efficacy, as evidenced by objective response, time to disease progression, and overall survival. Results: To date, 11 patients have been enrolled, with a median age of 63 years (range, 38–75 years). The MTD of bendamustine and lenalidomide has not been identified at this point; currently, patients are enrolling on dose level 3 with 100 mg/m2 bendamustine and 10 mg lenalidomide. Thus far, DLT included 1 grade 4 neutropenia at dose level 2. Nine of 11 patients are currently eligible for response assessment. A partial response was observed in 67% of patients, including 1 very good partial response and 5 partial responses (PR). Two patients experienced stable disease and 1 exhibited progressive disease. Grade 3/4 adverse events included grade 3 neutropenia, thrombocytopenia, anemia, hyperglycemia, and prolonged QTC, and 1 grade 4 neutropenia. Conclusions: Bendamustine, lenalidomide, and dexamethasone form a well-tolerated and highly active regimen even in heavily pretreated MM patients, with a PR rate of 67%. Additional updates on response and MTD will be available at the time of presentation. Disclosures: Lentzsch: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cephalon: Consultancy, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Bendamustine is not FDA approved for the treatment of multiple myeloma in the USA. Burt:Millennium: Honoraria; Celgene: Honoraria. Mapara:Resolvyx: Consultancy, Research Funding; Genzyme: Membership on an entity's Board of Directors or advisory committees; Gentium: Equity Ownership; Celgene: Spouse is consultant , has received research funding, and participates on advisory board; Cephalon: Spouse has received funding for clinical trial and participates on advisory board. Redner:Biogen: Equity Ownership; Wyeth: Equity Ownership; Glaxo-Smith-Kline: Equity Ownership; Pfizer: Equity Ownership; Genzyme: Membership on an entity's Board of Directors or advisory committees. Roodman:Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy; Acceleron: Consultancy. Zonder:Amgen: Consultancy; Pfizer: Consultancy; Cephalon: Consultancy; Millennium: Consultancy, Speaking (CME only); no promotional talks.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 31-31 ◽  
Author(s):  
Ravi Vij ◽  
Carol Ann Huff ◽  
William I. Bensinger ◽  
David S. Siegel ◽  
Sundar Jagannath ◽  
...  

Abstract Introduction: Multiple myeloma (MM) remains an incurable disease in need of new therapies with unique targets. Ibrutinib is a first-in-class, once-daily, oral, covalent inhibitor of Bruton’s tyrosine kinase (BTK), an essential enzyme in the B-cell receptor signaling pathway. While BTK is essential for the development and function of B cells and is down-regulated in plasma cells, the expression of BTK in malignant plasma cells is increased 4-fold and comparable to BTK expression levels in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). In addition, pre-clinical models show that BTK inhibition with ibrutinib led to direct inhibition of both osteoclast bone resorption and the release of osteoclast-derived tumor growth factors (Tai et al, Blood 2012). Taken together these data suggest that ibrutinib may have a role in the treatment of MM. Methods: This open label phase 2 dose escalation study was designed to enroll patients in 4 cohorts (Figure) to evaluate efficacy (≥MR) and secondary endpoints of safety, PK, ORR and DOR. Patients must have had documented non-responsive/progressive disease at the time of study entry following at least 2 prior lines of therapy including at least one immunomodulatory agent. Efficacy and safety were assessed at 4 weeks intervals using the IMWG response criteria for efficacy assessments (Rajkumar et al, Blood 2011), while safety was assessed according to CTCAE v4.0 criteria. Results: As of 15 May 2014 and a median follow up of 15.2 months, 69 patients with a median age of 64 years (range 43-81) were dosed, of which 20% had either a del 17p or p53 deletion. The number of median prior therapies was 4 (range, 2-14), 41% had ≥ 5 prior therapies and 80% had undergone autologous stem cell transplant. Sixty-two percent of patients were refractory to their last line of therapy and of the 65 patients that had received prior therapy with both an immunomodulatory agent and a proteasome inhibitor, 44% were refractory to both. Anti-tumor activity was noted across all cohorts. The highest activity with a clinical benefit rate (CBR) of 25% including 1 PR, 4 MR and 5 sustained (>4 cycles) SD was observed in Cohort 4. (Table) This led to expansion of Cohort 4 per protocol design. In Cohorts 1 and 3, 14 patients had dex added following PD, resulting in 1 PR and 9 SD. Overall, 57% experienced a Grade 3 or higher adverse event. The most commonly reported non-hematologic toxicities (any grade) were diarrhea (51%), fatigue (41%), nausea (35%), dizziness (25%), and muscle spasms (23%). The majority were Grade 1 and 2. Myelosuppression had a reported overall incidence of any grade anemia (29%), thrombocytopenia (23%), and neutropenia (7%) with 16%, 9% and 4% being Grade 3, respectively. There were no clinically meaningful differences among dose levels. Twenty-three patients experienced a SAE for a total of 47 reported events with 16 assessed as possibly/definitely related to ibrutinib per investigator. At least one dose modification occurred in 22% of patients, with 6 discontinuing due to an adverse event. At the time of the data cut-off 7 patients remain on study treatment. The most common reason for treatment discontinuation was PD in 47% of patients, with additional patients discontinuing due to investigator discretion (18%), patient decision (7%) and non-compliance (3%). Conclusions: In this heavily pre-treated patient population ibrutinib, as a single agent and in combination with dex, demonstrated evidence of anti-tumor activity. There was a trend toward improved efficacy (≥MR) in Cohort 4 and treatment was well tolerated with manageable toxicities. Ongoing correlative studies are being conducted to determine changes in cytokines, chemokines and indices of bone metabolism and to determine the effect of dex, a known CYP3A4/5 inducer, on the pharmacokinetic profile of ibrutinib. In addition, ibrutinib is currently being evaluated in combination with carfilzomib in an ongoing Phase1/2b study. (NCT01962792) Figure 1 Figure 1. Table Confirmed Response by Assigned Treatment Cohort Response, n (%) 1 (n=13) 2 (n=18) 3 (n=18) 4 (n=20) PR 1 1 - 1 MR 1 - - 4 SD ≥ 4 cycles 2 4 6 5 SD < 4 cycles 5 6 4 1 PD 4 5 7 5 Not evaluable - 2 1 4 Not evaluable – no post-baseline assessments Figure 2 Figure 2. Disclosures Off Label Use: Discussion of efficacy and safety data with ibrutinib as single-agent and in combination with dexamethasone in patients with relapsed and relapsed/refractory multiple myeloma treated in a phase 2 clinical trial. Huff:Celgene, Millenium: Consultancy. Bensinger:Pharmacyclics, Novartis, Celgene, Millenium, Sanofi, Acetylon: Consultancy, Research Funding. Siegel:Celgene, Millennium, Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Jagannath:Celgene, BMS, Jansen, Sanofi-Aventis: Honoraria. Lebovic:Onyx, Celgene: Speakers Bureau. Anderson:Celgene, Millenium, Onyx, : Speakers Bureau. Elias:Pharmacyclics, Inc.: Employment. Clow:Pharmacyclics, Inc.: Employment. Fardis:Pharmacyclics: Employment. Graef:Pharmacyclics: Employment. Bilotti:Pharmacyclics: Employment. Richardson:Celgene, Millennium, Johnson&Johnson: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4712-4712 ◽  
Author(s):  
Deepika Sharma Das ◽  
Ze Tian ◽  
Arghya Ray ◽  
Durgadevi Ravillah ◽  
Yan Song ◽  
...  

Abstract Background and Rationale: Multiple Myeloma (MM) remains incurable despite the advent of novel drugs, highlighting the need for further identification of factors mediating disease progression and resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Studies to date suggest an important role of BM hypoxia (low oxygenation) in MM cell survival, drug resistance, migration, and metastasis. Therapies targeting the MM cell in its BM milieu under hypoxic conditions may therefore achieve responses in patients resistant to various therapies. Recent studies led to the development of a novel aerospace-industry derived Phase 2 molecule RRx-001 with epigenetic and NO-donating properties. RRx-001 generates reactive oxygen and nitrogen species (RONS), which induces oxidative stress in tumor cells. Importantly, RRx-001 is also a potent vascular disrupting agent, which further provides rationale for utilizing RRx-001 as a therapeutic agent since tumor-associated angiogenesis is a characteristic of MM. A Phase I clinical trial has shown RRx-001 to have antitumor activity in heavily pretreated cancer patients and to be safe and well tolerated with no dose-limiting toxicities (Reid et al. J Clin Oncol 32:5s, 2014 suppl; abstr 2578). Here we examined the anti-MM activity of RRx-001 using in vitro and in vivo models of MM. Materials and methods: MM cell lines, patient MM cells, and peripheral blood mononuclear cells (PBMCs) from normal healthy donors were utilized to assess the anti-MM activity of RRx-001 alone or in combination with other agents. Drug sensitivity, cell viability, apoptosis, and migration assays were performed using WST, MTT, Annexin V staining, and transwell Inserts, respectively. Synergistic/additive anti-MM activity was assessed by isobologram analysisusing “CalcuSyn” software program. Signal transduction pathways were evaluated using immunoblotting. ROS release, nitric oxide generation, and mitochondrial membrane potential was measured as previously described (Chauhan et al., Blood, 2004, 104:2458). In vitro angiogenesis was assessed using matrigel capillary-like tube structure formation assays. DNMT1 activity was measured in protein lysates using EpiQuik DNMT1 assay kit. 5-methyl cytosine levels were analyzed in gDNA samples using methylflash methylated DNA quantification kit from Enzo life sciences; USA. For xenograft mouse model, CB-17 SCID-mice were subcutaneously inoculated with MM.1S cells as previously described (Chauhan et al., Blood, 2010, 115:834). Statistical significance of data was determined using a Student’st test. RRx-001 was obtained from RadioRx Inc., CA, USA; bortezomib, SAHA, and pomalidomide were purchased from Selleck chemicals, USA. Results: Treatment of MM cell lines (MM.1S, MM.1R, RPMI-8226, OPM2, H929, Dox-40 ARP-1, KMS-11, ANBL6.WT, ANBL6.BR, and LR5) and primary patient cells for 24h significantly decreased their viability (IC50 range 1.25nM to 2.5nM) (p < 0.001; n=3) without markedly affecting PBMCs from normal healthy donors, suggesting specific anti-MM activity and a favorable therapeutic index for RRx-001. Tumor cells from 3 of 5 patients were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Moreover, RRx-001 inhibits proliferation of MM cells even in the presence of BM stromal cells. Mechanistic studies show that RRx-001-triggered apoptosis is associated with 1) induction of DNA damage response signaling via ATM/p53/gH2AX axis; 2) activation of caspases mediating both intrinsic and extrinsic apoptotic pathways; 3) increase in oxidative stress through release of ROS and generation of NO; and 4) decrease in DNA methyltransferase (DNMT1) enzymatic activity and global methylation levels. Furthermore, RRx-001 blocked migration of MM cells and angiogenesis. In vivo studies using subcutaneous human MM xenograft models show that RRx-001 is well tolerated and inhibits tumor growth. Finally, combining RRx-001 with bortezomib, SAHA, or pomalidomide induces synergistic anti-MM activity and overcomes drug resistance. Conclusion: Our preclinical studies showing efficacy of RRx-001 in MM disease models provide the framework for clinical trial of RRx-001, either alone or in combination, to improve outcome in relapsed and refractory MM patients. Disclosures Richardson: Oncopeptides AB: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Oronsky:RadioRx Inc, : Employment. Scicinski:RadioRx Inc,: Employment. Chauhan:Triphase Accelerator: Consultancy. Anderson:Celgene: Consultancy; Millenium: Consultancy; Onyx: Consultancy; Gilead: Consultancy; Sanofi Aventis: Consultancy; BMS: Consultancy; Oncopep/Acetylon: Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3411-3411
Author(s):  
Maro Ohanian ◽  
Martha L. Arellano ◽  
Moshe Y. Levy ◽  
Kristen O'Dwyer ◽  
Hani Babiker ◽  
...  

Abstract INTRODUCTION: APTO-253 represses expression of the MYC oncogene by targeting a conserved G-quadruplex structure in its promoter, down-regulates MYC mRNA and protein levels and induces apoptosis in AML cell lines and marrow samples from patients with AML, MDS, and MPN in vitro. After injection, a large fraction of APTO-253 binds iron and transforms to the Fe(253) 3 complex which retains full activity. APTO-253 has been granted orphan drug designation for AML by the US FDA and is being studied in a Phase 1a/b clinical trial in patients with relapsed or refractory AML (R/R AML) or high-risk myelodysplasias (high-risk MDS) (NCT02267863). AIMS: Primary objectives are to determine the safety and tolerability of APTO-253, MTD, dose limiting toxicities (DLT), and the RP2D. Key secondary objectives are to assess the pharmacokinetic (PK) profile, pharmacodynamic (PD) activity, and preliminary evidence of antitumor activity. METHODS: Eligible patients have R/R AML or high-risk MDS for which either standard treatment has failed, is no longer effective, or can no longer be administered safely. Treatment- emergent adverse events (TEAEs) and tumor responses are evaluated using International Working Group criteria. APTO-253 is administered by IV infusion once weekly on days 1, 8, 15, and 22 of each 28-day cycle; ascending dose cohorts were enrolled at a starting dose of 20 mg/m 2 with planned escalation to 403 mg/m 2. RESULTS: As of June 7, 2021, a total of 18 patients (median age 64.0 years, 16 AML and 2 high-risk MDS) with a median of 2.5 prior treatments (range of 1 - 9) have been treated with APTO-253 at doses of 20 (n=1), 40 (n=1), 66 (n=4), 100 (n=4) and 150 mg/m 2 (n=8). Most patients were RBC (87.5% of AML and 100% of MDS) and/or platelet (75% of AML and 50% MDS) transfusion-dependent. No DLTs or drug-related serious adverse events have been reported. Only 1 patient had a drug-related TEAE of grade 3 or greater (fatigue, Grade 3, probably related). Preliminary PK analysis (Figure 1) showed that serum levels of APTO-253 were dose proportional. C max and AUC 0-72h for C1D1 dosing were 0.06, 0.02, 0.36 ± 0.37, 0.44 ± 0.41 and 0.72 ± 0.70 µM and 0.11, 0.15, 3.98 ± 1.77, 4.79 ± 0.87 and 2.51 ± 1.73 µM*h for dose levels of 20, 40, 66, 100 and 150 mg/m 2, respectively. Plasma levels for Fe(253) 3 were significantly higher than those for the APTO-253 monomer. For example, C max and AUC 0-72h of Fe(253) 3 for C1D1 dosing of patients in Cohort 150 mg/m 2 were 2- and 20- fold higher than the ATPO-253 monomer at 15.09 ± 0.42 µM and 51.52 ± 28.26 µM*h, respectively. Following dosing at 150 mg/m 2, serum concentrations of Fe(253) 3 were above 0.5 µM for &gt; 48 h, which approaches the therapeutic range based on in vitro studies. CONCLUSIONS: APTO-253 has been well-tolerated at doses of 20, 40, 66, 100 and 150 mg/m 2 over multiple cycles and escalated to 210 mg/m 2 (Cohort 6). PK analysis revealed that APTO-253 is rapidly transformed to and co-exists with the Fe(253) 3 in serum from R/R AML and high-risk MDS patients. Enrollment of patients at the 210 mg/m 2 dose level is ongoing and updated clinical data will be presented at the meeting. Figure 1 Figure 1. Disclosures Arellano: KITE Pharma, Inc: Consultancy; Syndax Pharmaceuticals, Inc: Consultancy. Levy: AstraZeneca: Consultancy, Honoraria, Speakers Bureau; Jazz Pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; GSK: Consultancy, Other: Promotional speaker; Janssen Pharmaceuticals: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Morphosys: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Seattle Genetics: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Epizyme: Consultancy, Other: Promotional speaker; Takeda: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Dova: Consultancy, Other: Promotional speaker; Novartis: Consultancy, Other: Promotional speaker; TG Therapeutics: Consultancy, Honoraria, Speakers Bureau; Karyopharm: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau; Gilead Sciences, Inc.: Consultancy, Honoraria, Speakers Bureau; Beigene: Consultancy, Honoraria, Speakers Bureau; Amgen Inc.: Consultancy, Honoraria, Other: Promotional speaker, Speakers Bureau. Mahadevan: caris: Speakers Bureau; Guardanthealt: Speakers Bureau; PFIZER: Other: Clinical trial Adverse events committee; TG Therapeuticals: Other: Clinical trial Adverse events committee. Zhang: Aptose Biosciences, Inc.: Current Employment. Rastgoo: Aptose Biosciences, Inc.: Current Employment. Jin: Aptose Biosciences, Inc.: Current Employment. Marango: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company. Howell: Aptose Biosciences, Inc.: Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Research Funding. Rice: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties; Oncolytics Biotech Inc.: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Bejar: Aptose Biosciences, Inc.: Current Employment, Current equity holder in publicly-traded company; Takeda: Research Funding; BMS: Consultancy, Research Funding; Gilead: Consultancy, Honoraria; Epizyme: Consultancy, Honoraria; Astex: Consultancy; Silence Therapeutics: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1442-1442
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Wencai Ma ◽  
Xiaoping Su ◽  
Hong Mu ◽  
...  

Abstract Wnt/β-catenin signaling regulates self-renewal and proliferation of AML cells and is critical in AML initiation and progression. Overexpression of β-catenin is associated with poor prognosis. We previously reported that inhibition of Wnt/β-catenin signaling by C-82, a selective inhibitor of β-catenin/CBP, exerts anti-leukemia activity and synergistically potentiates FLT3 inhibitors in FLT3-mutated AML cells and stem/progenitor cells in vitro and in vivo (Jiang X et al., Clin Cancer Res, 2018, 24:2417). BCL-2 is a critical survival factor for AML cells and stem/progenitor cells and ABT-199 (Venetoclax), a selective BCL-2 inhibitor, has shown clinical activity in various hematological malignancies. However, when used alone, its efficacy in AML is limited. We and others have reported that ABT-199 can induce drug resistance by upregulating MCL-1, another key survival protein for AML stem/progenitor cells (Pan R et al., Cancer Cell 2017, 32:748; Lin KH et al, Sci Rep. 2016, 6:27696). We performed RNA Microarrays in OCI-AML3 cells treated with C-82, ABT-199, or the combination and found that both C-82 and the combination downregulated multiple genes, including Rac1. It was recently reported that inhibition of Rac1 by the pharmacological Rac1 inhibitor ZINC69391 decreased MCL-1 expression in AML cell line HL-60 cells (Cabrera M et al, Oncotarget. 2017, 8:98509). We therefore hypothesized that inhibiting β-catenin by C-82 may potentiate BCL-2 inhibitor ABT-199 via downregulating Rac1/MCL-1. To investigate the effects of simultaneously targeting β-catenin and BCL-2, we treated AML cell lines and primary patient samples with C-82 and ABT-199 and found that inhibition of Wnt/β-catenin signaling significantly enhanced the potency of ABT-199 in AML cell lines, even when AML cells were co-cultured with mesenchymal stromal cells (MSCs). The combination of C-82 and ABT-199 also synergistically killed primary AML cells (P<0.001 vs control, C-82, and ABT-199) in 10 out of 11 samples (CI=0.394±0.063, n=10). This synergy was also shown when AML cells were co-cultured with MSCs (P<0.001 vs control, C-82, and ABT-199) in all 11 samples (CI=0.390±0.065, n=11). Importantly, the combination also synergistically killed CD34+ AML stem/progenitor cells cultured alone or co-cultured with MSCs. To examine the effect of C-82 and ABT-199 combination in vivo, we generated a patient-derived xenograft (PDX) model from an AML patient who had mutations in NPM1, FLT3 (FLT3-ITD), TET2, DNMT3A, and WT1 genes and a complex karyotype. The combination synergistically killed the PDX cells in vitro even under MSC co-culture conditions. After PDX cells had engrafted in NSG (NOD-SCID IL2Rgnull) mice, the mice were randomized into 4 groups (n=10/group) and treated with vehicle, C-82 (80 mg/kg, daily i.p injection), ABT-199 (100 mg/kg, daily oral gavage), or the combination for 30 days. Results showed that all treatments decreased circulating blasts (P=0.009 for C-82, P<0.0001 for ABT-199 and the combination) and that the combination was more effective than each single agent (P<0.001 vs C-82 or ABT-199) at 2 weeks of therapy. The combination also significantly decreased the leukemia burden in mouse spleens compared with controls (P=0.0046) and single agent treated groups (P=0.032 or P=0.020 vs C-82 or ABT-199, respectively) at the end of the treatment. However, the combination did not prolong survival time, likely in part due to toxicity. Dose modifications are ongoing. These results suggest that targeting Wnt/β-catenin and BCL-2, both essential for AML cell and stem cell survival, has synergistic activity via Rac1-mediated MCL-1 inhibition and could be developed into a novel combinatorial therapy for AML. Disclosures Andreeff: SentiBio: Equity Ownership; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Amgen: Consultancy, Research Funding; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Reata: Equity Ownership; Astra Zeneca: Research Funding; Celgene: Consultancy; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer . Carter:novartis: Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3582-3582 ◽  
Author(s):  
Paul Richardson ◽  
S. Lonial ◽  
A. Jakubowiak ◽  
J. Wolf ◽  
A. Krishnan ◽  
...  

Abstract Perifosine is an oral, novel synthetic alkylphospholipid, with multiple effects on signal transduction pathways, including inhibition of Akt and activation of JNK. Preclinical in vitro studies showed that perifosine induces significant cytotoxicity in both multiple myeloma(MM) cell lines and patient MM cells resistant to conventional therapies, and augments dexamethasone(dex), doxorubicin, melphalan and bortezomib-induced MM cell cytotoxicity. In vivo studies showed significant antitumor activity in a human plasmacytoma mouse model. PhaseI studies in solid tumors have shown that perifosine is well tolerated at a dose of up to150mg daily, with responses also seen. We report preliminary results of a PhaseII trial of perifosine, alone and in combination with dex, in patients(pts) with relapsed or relapsed/refractory MM. Pts received 150mg of perifosine daily for a 21-day(d) cycle, and were assessed by serum and/or urine electrophoresis. Eligible pts had relapsed or relapsed/refractory MM with measurable disease. Pts were permitted bisphosphonate treatment. Concomitant steroids(prednisone>10 mg/d), serum creatinine of >3.0 mg/dL, and hemoglobin<8.0g/dL within 14 d of enrollment were exclusion criteria. Progressing pts, documented on 2 occasions at least one week apart, had dex 20 mg twice per week added to perifosine. Toxicities were assessed by NCI-CTCAE, v3.0. 40 pts (22 men and 18 women, median age 61 y, range 38–78) have been treated to date. All had relapsed/refractory MM, with a median of 4 lines of prior treatment (range 1–9). Prior therapy included dex(100%), thalidomide(100%), bortezomib(73%), lenalidomide(28%) and stem cell transplant(73%). Among 25 pts currently evaluable for response, best response(EBMT criteria) to single agent perifosine after≥2 cycles was stable disease(<25% reduction in M-protein) in 6 pts(24%). Dex was added in 15 of 25 pts with PD, with 9 pts evaluable for response on the combination: 3 pts(33%) achieved MR and 2(22%) pts achieved SD. The most common adverse events included nausea (45%, 3% grade 3); vomiting (40%); diarrhea(40%); fatigue(24%, 3% grade 3), and increased creatinine(55%, 11% grade 3/4 in the context of PD and light chain nephropathy). 2 pts had G3 neutropenia which resolved. Dose reduction(150 to 100 mgs/d) was required in 11 pts and 4 pts discontinued treatment due to adverse events. Attributable toxicities otherwise proved manageable with appropriate supportive care and perifosine was generally well tolerated, with no peripheral neuropathy or DVT seen. Perifosine as monotherapy and in combination with dex has activity in pts with advanced, relapsed/refractory MM, achieving MR and/or stabilization of disease in 55% of evaluable pts to date. It was generally well tolerated, although caution in pts with renal dysfunction is warranted. PK, IHC and gene array studies are ongoing. Future studies evaluate perifosine at other dosing schedules and in combination with other agents including bortezomib.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3856-3856 ◽  
Author(s):  
Noopur Raje ◽  
Paul Richardson ◽  
Parameswaran N Hari ◽  
Anuj Mahindra ◽  
Sarah Kaster ◽  
...  

Abstract Abstract 3856 Poster Board III-792 Background Lenalidomide (Revlimid®, Len) plus dexamethasone (Dex) is approved for the treatment of relapsed or refractory multiple myeloma (MM) patients following ≥1 prior therapy. mTOR inhibitor RAD001 has been studied as a single agent in MM, and although well tolerated, did not have single agent activity. Given the increased toxicity noted with pulsed high dose steroids, we sought to study a non-steroid containing oral regimen for the treatment of relapsed MM predicated upon our previous studies which demonstrated synergistic anti-MM activity of mTOR inhibitors when combined with len. Here, we extended our in vitro observations to a phase I clinical trial combining RAD001 with len in patients with relapsed or refractory MM. The primary objective was to assess toxicity of this combination and to determine the maximum tolerated dose (MTD). The secondary objective was to determine the activity of this combination. Methods Patients with relapsed and refractory MM were assigned to len and RAD001 to be taken for 21 days of a 28 day cycle. Dose escalation followed a modified Fibonacci design. Patients were allowed to continue therapy until disease progression or unacceptable toxicity. Patients received concomitant anti-thrombotic (aspirin 81 or 325 mg/day) therapy. Response was assessed according to modified EBMT and Uniform Criteria, and toxicities were assessed using NCI CTCAE v3.0. Results Eighteen MM patients have been enrolled to date. One patient in cohort 1 (Len: 10mg and RAD001: 5 mg x 21 days) developed grade 3 neutropenia requiring expansion of the cohort. Cohort 2 (Len: 15mg and RAD001: 5 mg x 21 days) also required expansion because of grade 4 thrombocytopenia noted in 1 patient. Dose limiting toxicities included grade 4 neutropenia and thrombocytopenia in 2/3 patients in cohort 3 (Len: 20mg and RAD001: 5 mg x 21 days). The MTD for patients with MM was therefore declared at 15 mg of len and 5mg of RAD001 for 21 days with a 7 day rest period. Apart from the hematological toxicities expected with the combination, patients otherwise tolerated the regimen well. Most common (≥10%) grade 1 / 2 events included nausea, fatigue, dyspnea, diarrhea, constipation, neuropathy and muscle cramps, all of which were manageable with supportive care. No thromboembolic events were noted. Grade 3 / 4 adverse events ≥ 5% included thrombocytopenia (11%) and neutropenia (22%). Fifteen patients have finished at least 2 cycles of therapy: 8 of 15 patients have either stable disease (SD: 1), minimal response (MR: 5) or a partial response (PR: 2), including 7 of 9 patients treated at the recommended MTD for an overall response rate (MR or better) of 50% (90% CI: [30.76%]). One patient with SD continued therapy for a total of 10 cycles, without significant toxicities. Conclusions The combination of Len plus RAD001 is a well tolerated regimen with predictable hematological toxicities. Promising responses were noted in this heavily pretreated patient population. This combination provides an oral steroid free combination alternative strategy which warrants future evaluation in phase II studies. Disclosures: Raje: Astrazeneca : Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees. Off Label Use: RAD001 not labelled for use in myeloma. Richardson:Keryx: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Johnson and Johnson: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium Pharmaceuticals, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Hari:Celgene: Research Funding, Speakers Bureau. Laubach:Novartis:. Ghobrial:Millennium: Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau. Adams:Novartis: Employment. Makrides:Celgene: Employment.


Sign in / Sign up

Export Citation Format

Share Document