Toll-Like Receptors 2 and 4 Mediate the Capacity of Human Bone Marrow-Derived Mesenchymal Stem Cells to Support the Proliferation and Differentiation of CD34+ Cells In a Non-Synergistic Way.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3850-3850
Author(s):  
Xingbing Wang ◽  
Qiansong Cheng ◽  
Jian Wang ◽  
Liang Xia ◽  
Xuhan Zhang ◽  
...  

Abstract Abstract 3850 Human bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent nonhematopoietic progenitor cells, which can differentiate into osteoblasts, adipocytes, chondrocytes and other tissues. The most important function of BM-MSCs is to support hematopoiesis. Toll-like receptors (TLRs) are a conserved family of receptors that can be activated by both pathogen components and mammalian endogenous molecules such as heat-shock proteins and extracellular matrix breakdown products. In the past a few year, several studies reported that TLRs are expressed in hematopoietic and non-hematopoietic to modulate their biological functions. We hypothesized that MSCs are equipped with TLRs that enable them to dynamically change hematopoiesis-related cytokines expression pattern and level by sensing correspondent agonists, thus efficiently supporting hematopoiesis. In this study, BM-MSCs were analyzed for mRNA expression of TLR 1–9 by reverse transcription-polymerase chain reaction. TLR 1–6, but not TLR 7–9 were expressed by MSCs. The expression of TLR2 and TLR4 was also confirmed by flow cytometic assay. We further explored the role of TLR2 and TLR4 in mediating the capacity of MSC to support the proliferation and differentiation of CD34+ cells. The pre-stimulation with TLR2 agonists (Pam3Cys) or TLR4 agonists (LPS) enable MSCs to enhance CD34+ cells proliferation and promote CD34+ cells differentiation towards the myeloid lineage (CD33+, CD11b+), as well as granulocyte colony formation by those cells. The production of interleukin 8 (IL-8), IL-11, stem cell factor (SCF), granulocyte colony-stimulating factor (CSF), macrophage CSF and granulocyte-macrophage CSF were also increased by stimulated MSCs. Interestingly, although Pam3Cys and LPS displayed different inductive magnitudes, they have no synergistic effect on MSCs. We hypothesized there may be some antagonistic effect between TLR2 and TLR4 intracellular signal conductive pathway, or they can downregulate the expressive level of the TLRs on MSCs. Together, our findings suggest that TLR2 and TLR4 signalings may indirectly regulate hematopoiesis by modulating MSCs' functions. The increased haemopoietic proliferation and myeloid lineage differentiation could be mediated, at least in part, by augmented hematopoiesis-related cytokine production. Disclosures: Wang: National Natural Science Foundation (30700329): Research Funding; Anhui Provincial Outstanding Young Investigator Program (08040106810): Research Funding; Fund of Anhui Provincial “115” Industrial Innovation Program: Research Funding.

2016 ◽  
Vol 8 (23) ◽  
pp. 14406-14413 ◽  
Author(s):  
Ke Zheng ◽  
Ying Chen ◽  
Wenwen Huang ◽  
Yinan Lin ◽  
David L. Kaplan ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 756-763 ◽  
Author(s):  
Yasushi Sato ◽  
Hironobu Araki ◽  
Junji Kato ◽  
Kiminori Nakamura ◽  
Yutaka Kawano ◽  
...  

Abstract Hepatic transdifferentiation of bone marrow cells has been previously demonstrated by intravenous administration of donor cells, which may recirculate to the liver after undergoing proliferation and differentiation in the recipient's bone marrow. In the present study, to elucidate which cellular components of human bone marrow more potently differentiate into hepatocytes, we fractionated human bone marrow cells into mesenchymal stem cells (MSCs), CD34+ cells, and non-MSCs/CD34- cells and examined them by directly xenografting to allylalcohol (AA)-treated rat liver. Hepatocyte-like cells, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), albumin (Alb), cytokeratin 19 (CK19), cytokeratin 18 (CK18), and asialoglycoprotein receptor (AGPR), and by reverse transcription-polymerase chain reaction (RT-PCR) for expression of AFP and Alb mRNA, were observed only in recipient livers with MSC fractions. Cell fusion was not likely involved since both human and rat chromosomes were independently identified by fluorescence in situ hybridization (FISH). The differentiation appeared to follow the process of hepatic ontogeny, reprogramming of gene expression in the genome of MSCs, as evidenced by expression of the AFP gene at an early stage and the albumin gene at a later stage. In conclusion, we have demonstrated that MSCs are the most potent component in hepatic differentiation, as revealed by directly xenografting into rat livers. (Blood. 2005;106:756-763)


Stem Cells ◽  
2008 ◽  
Vol 26 (1) ◽  
pp. 279-289 ◽  
Author(s):  
Francesco Liotta ◽  
Roberta Angeli ◽  
Lorenzo Cosmi ◽  
Lucia Filì ◽  
Cinzia Manuelli ◽  
...  

2022 ◽  
Vol 12 (3) ◽  
pp. 480-488
Author(s):  
Shaoying Liu ◽  
Chengying Zhang ◽  
Jing Hao ◽  
Yuna Liu ◽  
Sidao Zheng ◽  
...  

Mesenchymal stem cells (MSCs) are the excellent candidates in myocardial regeneration given their easy accessibility, low immunogenicity and high potential for cardiomyocyte differentiation. This work focused on investigating the role of icariin, a main active component of the Traditional Chinese herb epimedium, in human bone marrow-derived MSCs (BMSCs) proliferation and differentiation into cardiomyocytes In Vitro. Human BMSCs were cultivated In Vitro, and MTT assay was conducted to measure their proliferation. On this basis, we selected the optimal icariin dose for promoting the proliferation to induce cardiomyocyte differentiation of MSCs, which were pretreated with or without 5-azacytidine (5-Aza). Cardiac-specific cardiac troponin I (cTnI) and connexin 43 (Cx43)-positive cells were detected by immunofluorescent staining. The differentiation ratio of MSCs was examined by flow cytometry. This study measured early cardiac transcription factors (TFs) Nkx2.5 and GATA4 levels through RT-PCR and Western blotting (WB). As a result, icariin increased MSC proliferation dependent on its dose, and the optimal dose was determined to be 80 μg/l. Furthermore, MSCs showed minimal cardiomyogenic differentiation when induced by icariin alone as confirmed by the expression of cardiac-related markers. Moreover, a synergic interaction was observed when icariin and 5-Aza cooperated to induce cardiomyocyte differentiation of MSCs. In conclusion, Icariin stimulates proliferation and facilitates cardiomyocyte differentiation of MSCs In Vitro and may be potentially used as a new method for enhancing the MSCs efficacy in cardiovascular disease.


2021 ◽  
Author(s):  
Xia Yi ◽  
Ping Wu ◽  
Jianyun Liu ◽  
Shan He ◽  
Ying Gong ◽  
...  

Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors.


Sign in / Sign up

Export Citation Format

Share Document