Antigen-Specific Transfer of Functional Programmed Death Ligand 1 From Antigen Presenting Cells Onto Human CD8+ T Cells Via Trogocytosis

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 584-584
Author(s):  
Regina Gary ◽  
Simon Voelkl ◽  
Ralf Palmisano ◽  
Andreas Mackensen

Abstract Abstract 584 Specific T-cell responses are initiated by T-cell receptor (TCR) recognition of peptide-MHC-complexes on antigen presenting cells (APCs). Upon specific interaction of T cells with APCs T cells capture membrane fragments and surface molecules of APCs in a process termed trogocytosis. Exchange of membrane molecules/antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. Here, we demonstrate that human antigen-specific CD8+ T cells do acquire the co-inhibitory molecule programmed death ligand 1 (PD-L1) from mature monocyte-derived dendritic cells (mDC) and tumor cells in an antigen-specific manner. The kinetics of PD-L1 transfer revealed a maximal PD-L1 expression on antigen-specific T cells within 3–4 hours after co-incubation with antigen-pulsed APCs, being detectable up to 72 hours. Antigen-pulsed immature DCs were less effective in transfering surface molecules such as PD-L1 onto CD8+ T cells after antigen-specific recognition. Using a transwell system we could show that the acquisition of PD-L1 requires cell-cell contact. Furthermore, PD-L1 cannot be acquired by T cells from a lysate of mDCs. The transfer process is impaired after pretreatment of T cells with concanamycin A, a specific inhibitor of vacuolar ATPases, playing an important role in membrane trafficking. Moreover, fixation of DCs with glutaraldehyde completely abrogated the acquisition of PD-L1 on T cells suggesting that an active interaction between APCs and T cells is required for trogocytosis. Of importance, CD8+ T cells which acquired PD-L1 complexes, were able to induce apoptosis of neighbouring PD-1 expressing CD8+ T cells, that could be completely blocked by an anti-PD-L1 antibody. In summary our data demonstrate for the first time that human antigen-specific CD8+ T cells take up functionally active PD-L1 from APCs in an antigen-specific fashion, leading to apoptosis of PD-1 expressing T cells. The transfer of functionally active co-inhibitory molecules from APCs onto human CD8+ T cells may serve to limit clonal expansion of antigen-specific T-cell responses but may also play a major role for T-cell exhaustion in chronic infection and tumor immunosurveillance. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3546-3552 ◽  
Author(s):  
Christian Schütz ◽  
Martin Fleck ◽  
Andreas Mackensen ◽  
Alessia Zoso ◽  
Dagmar Halbritter ◽  
...  

Abstract Several cell-based immunotherapy strategies have been developed to specifically modulate T cell–mediated immune responses. These methods frequently rely on the utilization of tolerogenic cell–based antigen-presenting cells (APCs). However, APCs are highly sensitive to cytotoxic T-cell responses, thus limiting their therapeutic capacity. Here, we describe a novel bead-based approach to modulate T-cell responses in an antigen-specific fashion. We have generated killer artificial APCs (κaAPCs) by coupling an apoptosis-inducing α-Fas (CD95) IgM mAb together with HLA-A2 Ig molecules onto beads. These κaAPCs deplete targeted antigen-specific T cells in a Fas/Fas ligand (FasL)–dependent fashion. T-cell depletion in cocultures is rapidly initiated (30 minutes), dependent on the amount of κaAPCs and independent of activation-induced cell death (AICD). κaAPCs represent a novel technology that can control T cell–mediated immune responses, and therefore has potential for use in treatment of autoimmune diseases and allograft rejection.


2020 ◽  
Author(s):  
Gunnstein Norheim ◽  
Elisabeth Stubsrud ◽  
Lise Madelene Skullerud ◽  
Branislava Stankovic ◽  
Stalin Chellappa ◽  
...  

AbstractThe pandemic caused by the SARS-CoV-2 virus in 2020 has led to a global public health emergency, and non-pharmaceutical interventions required to limit the viral spread are severely affecting health and economies across the world. A vaccine providing rapid and persistent protection across populations is urgently needed to prevent disease and transmission. We here describe the development of novel COVID-19 DNA plasmid vaccines encoding homodimers consisting of a targeting unit that binds chemokine receptors on antigen-presenting cells (human MIP-1α /LD78β), a dimerization unit (derived from the hinge and CH3 exons of human IgG3), and an antigenic unit (Spike or the receptor-binding domain (RBD) from SARS-CoV-2). The candidate encoding the longest RBD variant (VB2060) demonstrated high secretion of a functional protein and induced rapid and dose-dependent RBD IgG antibody responses that persisted up to at least 3 months after a single dose of the vaccine in mice. Neutralizing antibody (nAb) titers against the live virus were detected from day 7 after one dose. All tested dose regimens reached titers that were higher or comparable to those seen in sera from human convalescent COVID-19 patients from day 28. T cell responses were detected already at day 7, and were subsequently characterized to be multifunctional CD8+ and Th1 dominated CD4+ T cells. Responses remained at sustained high levels until at least 3 months after a single vaccination, being further strongly boosted by a second vaccination at day 89. These findings, together with the simplicity and scalability of plasmid DNA manufacturing, safety data on the vaccine platform in clinical trials, low cost of goods, data indicating potential long term storage at +2° to 8°C and simple administration, suggests the VB2060 candidate is a promising second generation candidate to prevent COVID-19.


MedChemComm ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Youhui Si ◽  
Yi Wen ◽  
Jianjun Chen ◽  
Rebecca R. Pompano ◽  
Huifang Han ◽  
...  

Self-assembled peptide nanofiber vaccines trigger redundant MyD88-dependent and MyD88-independent signaling pathways in APCs and T cells.


2004 ◽  
Vol 200 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Amy Morck Thomas ◽  
Lynn M. Santarsiero ◽  
Eric R. Lutz ◽  
Todd D. Armstrong ◽  
Yi-Cheng Chen ◽  
...  

Tumor-specific CD8+ T cells can potentially be activated by two distinct mechanisms of major histocompatibility complex class I–restricted antigen presentation as follows: direct presentation by tumor cells themselves or indirect presentation by professional antigen-presenting cells (APCs). However, controversy still exists as to whether indirect presentation (the cross-priming mechanism) can contribute to effective in vivo priming of tumor-specific CD8+ T cells that are capable of eradicating cancer in patients. A clinical trial of vaccination with granulocyte macrophage–colony stimulating factor–transduced pancreatic cancer lines was designed to test whether cross-presentation by locally recruited APCs can activate pancreatic tumor-specific CD8+ T cells. Previously, we reported postvaccination delayed-type hypersensitivity (DTH) responses to autologous tumor in 3 out of 14 treated patients. Mesothelin is an antigen demonstrated previously by gene expression profiling to be up-regulated in most pancreatic cancers. We report here the consistent induction of CD8+ T cell responses to multiple HLA-A2, A3, and A24-restricted mesothelin epitopes exclusively in the three patients with vaccine-induced DTH responses. Importantly, neither of the vaccinating pancreatic cancer cell lines expressed HLA-A2, A3, or A24. These results provide the first direct evidence that CD8 T cell responses can be generated via cross-presentation by an immunotherapy approach designed to recruit APCs to the vaccination site.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hongyu Yu ◽  
Shaoyuan Cui ◽  
Yan Mei ◽  
Qinggang Li ◽  
Lingling Wu ◽  
...  

Background. Mesangial cells play a prominent role in the development of inflammatory diseases and autoimmune disorders of the kidney. Mesangial cells perform the essential functions of helping to ensure that the glomerular structure is stable and regulating capillary flow, and activated mesangial cells acquire proinflammatory activities. We investigated whether activated mesangial cells display immune properties and control the development of T cell immunity. Methods. Flow cytometry analysis was used to study the expression of antigen-presenting cell surface markers and costimulatory molecules in mesangial cells. CD4+ T cell activation induced by mesangial cells was detected in terms of T cell proliferation and cytokine production. Results. IFN-γ-treated mesangial cells express membrane proteins involved in antigen presentation and T cell activation, including MHC-II, ICAM-1, CD40, and CD80. This finding suggests that activated mesangial cells can take up and present antigenic peptides to initiate CD4+ T cell responses and thus act as nonprofessional antigen-presenting cells. Polarization of naïve CD4+ T cells (Th0 cells) towards the Th1 phenotype was induced by coculture with activated mesangial cells, and the resulting Th1 cells showed increased mRNA and protein expression of inflammation-associated genes. Conclusion. Mesangial cells can present antigen and modulate CD4+ T lymphocyte proliferation and differentiation. Interactions between mesangial cells and T cells are essential for sustaining the inflammatory response in a variety of glomerulonephritides. Therefore, mesangial cells might participate in immune function in the kidney.


2000 ◽  
Vol 192 (8) ◽  
pp. 1105-1114 ◽  
Author(s):  
Ross M. Kedl ◽  
William A. Rees ◽  
David A. Hildeman ◽  
Brian Schaefer ◽  
Tom Mitchell ◽  
...  

These studies tested whether antigenic competition between T cells occurs. We generated CD8+ T cell responses in H-2b mice against the dominant ovalbumin epitope SIINFEKL (ova8) and subdominant epitope KRVVFDKL, using either vaccinia virus expressing ovalbumin (VV-ova) or peptide-pulsed dendritic cells. CD8+ T cell responses were visualized by major histocompatibility complex class I–peptide tetrameric molecules. Transfer of transgenic T cells with high affinity for ova8 (OT1 T cells) completely inhibited the response of host antigen-specific T cells to either antigen, demonstrating that T cells can directly compete with each other for response to antigen. OT1 cells also inhibited CD8+ T cell responses to an unrelated peptide, SIYRYGGL, providing it was presented on the same dendritic cells as ova8. These inhibitions were not due to a more rapid clearance of virus or antigen-presenting cells (APCs) by the OT1 cells. Rather, the inhibition was caused by competition for antigen and antigen-bearing cells, since it could be overcome by the injection of large numbers of antigen-pulsed dendritic cells. These results imply that common properties of T cell responses, such as epitope dominance and secondary response affinity maturation, are the result of competitive interactions between antigen-bearing APC and T cell subsets.


Sign in / Sign up

Export Citation Format

Share Document