Single Cell Network Profiling (SCNP) Signatures Predict Response to Induction Therapy and Relapse Risk In Pediatric Patients with Acute Myeloid Leukemia: Children's Oncology Group (COG) Study POG-9421

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 954-954
Author(s):  
Norman J. Lacayo ◽  
Aileen Cohen ◽  
Matt Westfall ◽  
Alan Lackey ◽  
Xiaohua (Robert) Xin ◽  
...  

Abstract Abstract 954 Background: About 90% of pediatric patients with newly diagnosed acute myeloid leukemia (AML) have disease responsive to chemotherapy and achieve an initial complete response (CR) with anthracycline/cytarabine-based induction chemotherapy. However, 30–70% of patients of varying risks relapse within 4–5 years. Prospective identification of patients unlikely to benefit from induction therapy or likely to relapse could spare patients from treatment-related toxicities and allow consideration of alternative therapies. Current prognostic factors (e.g., cytogenetics and FLT3 ITD) of value at the population level are imperfect at the individual level. SCNP is a tool used to measure the effects of multiple modulators (including drugs) on signaling pathways at both the single-cell and individual patient level. A set of classifiers has been developed using SCNP technology that predicts the likelihood of response to anthracycline/cytarabine-based induction in adult patients with newly diagnosed AML. This training set has led to the development of classifiers that predict the response to anthracycline/cytarabine-based induction therapy and risk of disease relapse for pediatric patients with newly diagnosed AML. Validation in additional COG cohorts will lead to a novel SCNP classifier that can be used in the clinic. Methods: SCNP assays were performed on 77 bone marrow samples from pediatric AML patients enrolled in POG trial 9421 of which 67 were evaluable/had sufficient data for analysis and were enriched for non-responders (NR). 80 combinations of modulators and intra-cellular proteins (signaling nodes) were investigated including nodes involved in the phosphoinositide 3-kinase (PI3K), Janus Kinases (JAK), signal transducers and activators of transcription (STAT) and the DNA damage response and apoptosis pathways. Basal and modulated protein levels in leukemic blasts were measured using several metrics (e.g., fold change, total level of phosphorylation, and a rank based method Uu measuring the proportion of cells that shift from baseline), and nodes were examined in univariate and multivariate analyses for their ability to discriminate between responders (CR, n=46) and non-responders (NR, n=21) to anthracycline/cytarabine-based induction therapy. Furthermore, nodes were examined for their ability to identify patients likely to be in complete continuous remission (CCR, n=23) or relapse (CR-Rel, n=23) within 4 years. Results: Univariate analysis revealed 19 nodes associated with disease response to conventional induction therapy and 9 associated with CR-Rel (i.e., area under the operator/receiver curve (AUC of ROC=AUC*) >0.65; p<0.05). As in adult studies, nodes involved in the apoptotic response to agents inducing DNA damage (e.g., etoposide→c-PARP AUC* 0.83, AraC+Daunorubicin→c-PARP AUC* 0.76, AraC+Daunorubicin→p-Chk2 AUC* 0.71) showed higher levels of apoptosis in CR samples than in NR samples. Similarly, FLT3 and SCF phosphorylation levels of PI3K pathway members S6 (AUC* 0.70) and ERK (AUC* 0.65) were also higher in CR samples, while hydrogen peroxide as a modulator (acting either as a reactive oxygen species or as a phosphatase inhibitor) revealed lower p-Akt and p-PLC γ levels in NR samples (AUC* 0.70 for both). In multivariate analysis combination of 2–8 nodes (representing apoptosis, Jak/Stat and PI3K pathways) resulted in classifiers with good performance characteristics (bootstrap adjusted AUC* 0.84 – 0.88) in predicting response to induction therapy. Increased sensitivity to etoposide and anthracycline/cytarabine was also associated with CCR in univariate analysis (AUC* 0.77 and 0.68 respectively). Thapsigargin, a modulator known to raise intracellular calcium, induced p-Erk, p-CREB and p-S6 less in CR-Rel than in CCR samples. To predict the response to therapy, multivariate classifiers were better than individual nodes at discriminating between CR-Rel and CCR groups (adjusted AUC*>0.8). Additional analyses that evaluate independence and ability to combine clinical or molecular predictors (e.g., cytogenetics, FLT3 ITD) with SCNP data will be presented. Conclusion: The training study data show the value of performing quantitative SCNP under modulated conditions as the basis for developing highly predictive tests for response to induction chemotherapy in pediatric patients with newly diagnosed AML. Independent validation studies will follow. Disclosures: Lacayo: Nodality Inc.: Honoraria. Cohen:Nodality Inc.: Employment, Equity Ownership. Westfall:Nodality Inc.: Employment, Equity Ownership. Lackey:Nodality Inc.: Employment, Equity Ownership. Xin:Nodality Inc.: Employment, Equity Ownership. Gayko:Nodality Inc.: Employment, Equity Ownership. Putta:Nodality Inc.: Employment, Equity Ownership. Cesano:Nodality Inc.: Employment, Equity Ownership.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1461-1461 ◽  
Author(s):  
Jan Moritz Middeke ◽  
Christoph Rollig ◽  
Michael Kramer ◽  
Alwin Kramer ◽  
Tilman Bochtler ◽  
...  

Abstract Purpose Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are one of the most frequent alterations in acute myeloid leukemia (AML) and can be found in ~20% of patients at diagnosis. Several IDH inhibitors are currently in late stage clinical development with Enasidenib, an IDH2 inhibitor, being recently approved by the FDA. Previous analyses have reported differential impact on response to chemotherapy and outcome, depending on the IDH-mutation type, co-occurring mutations and cytogenetic abnormalities, as well as the variant allele frequency (VAF) of IDH mutations. In order to better understand its prognostic role, we analyzed newly diagnosed AML patients enrolled in prospective trials of the Study Alliance Leukemia (SAL) to investigate the impact of IDH1/2 mutations on outcome. Patients and Methods All AML patients consecutively enrolled into intensive AML treatment protocols of the SAL or into the SAL registry were included in this analysis. Next-generation sequencing (NGS) on an Illumina MiSeq-system was performed to detect IDH1/2 mutations using pre-treatment samples. Overall survival (OS) and response to therapy were analyzed for all patients with intensive treatment and according to the mutational status. Results Overall, samples of 3898 patients were analyzed. The median follow-up was 91 months (95% CI 87.2 - 93.9). Patients' characteristics are shown in Tbl.1. Three-hundred twenty-nine patients (8.4%) had IDH1 mutations and 423 (11%) had IDH2 mutations; both mutations were found in 12 pts, so the overall mutation rate in IDH1 and 2 was 19% (740/3898 patients). Of the IDH1 variants, the most common ones were the R132C found in 143 patients (43%) and R132H in 137 patients (42%). For IDH2, 324 patients had the R140Q (77%) and 80 patients the R172K (19%) variant. According to the two main variants of the more common IDH2 mutations, as reported before, the IDH2 R172K was mutually exclusive with NPM1 and/or FLT3-ITD mutations. Overall, there was a trend for increased OS for patients with IDH2 R172K (26 vs. 15 months) as compared to those with R140Q. Considering only patients with a normal karyotype and no NPM1/FLT3-ITD mutation, these patients (n=27) had a highly significant better OS than patients with IDH2 R140Q (46.3 vs. 13.1 months, p=.012), supporting the findings published by Papaemmanuil et al. (NEJM 2016). In IDH1-mutated patients, we observed statistically significant differences in baseline characteristics between the two most common mutation types, IDH1 R132C and R132H. Patients carrying the R132C mutation were older (62 vs. 55 years, p=.001), had lower WBC (3.6 vs. 21 Gpt/L, p≤.001) and were less likely to have a normal karyotype (43% vs. 66%, p=.002), NPM1 (23% vs. 66%, p=<.001), and FLT3-ITD mutations (8% vs. 27%, p<.001) than those with the R132H variant. In univariate testing, the CR rate was also statistically significant lower in patients with IDH1 R132C (53% vs. 72%, p≤.001), with a median OS of 12.9 months compared to 17.4 months for patients with R132H variant (p=.08). In multivariate analysis including age, WBC, NPM1 and FLT3 status, and ELN risk, the CR rate was significantly lower in patients with the IDH1 R132C variant (p=.038). The median IDH VAF was 38% (range, 0.1 - 58) with no difference according to the different types of mutation. Patients with a VAF > 30% had a significantly higher BM blast count (73% vs 40% for VAF≤5%) and WBC (21.2 Gpt/L vs. 3.7 Gpt/L) at baseline, but there was no clear impact on CR rate or OS found in multivariate analysis. Conclusion In this large cohort of AML patients with IDH1/2 mutations, we found significant and so far not reported differences for one of the two most prominent mutations types of IDH1. The R132C variant was associated with increased age, lower WBC, and lower NPM1 and/or FLT3 co-mutation rate. Further, these patients had lower CR rates and a trend for shorter OS. For IDH2 we were able to reproduce findings on co-mutations and showed a favorable outcome for intensively treated patients with a normal karyotype and no NPM1/FLT3-ITD mutation and the IDH2 R172K variant, providing additional evidence for classification as a separate AML entity. Disclosures Middeke: Roche: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Kramer:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bayer: Research Funding; Daiichi Sankyo: Consultancy. Scholl:Alexion: Other: Travel support; Abbivie: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees; MDS: Other: Travel support; Jazz Pharma: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Incyte: Research Funding; Pfizer: Research Funding; Takeda: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Research Funding. Brümmendorf:Takeda: Consultancy; Pfizer: Consultancy, Research Funding; Janssen: Consultancy; Merck: Consultancy; Novartis: Consultancy, Research Funding. Burchert:Novartis: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Novartis: Honoraria; Roche: Honoraria; Takeda: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Johnson & Johnson: Research Funding; Roche: Research Funding; Eisai: Research Funding; Affimed: Research Funding; Novartis: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Schetelig:Gilead: Consultancy, Honoraria, Research Funding; Abbvie: Honoraria; Janssen: Consultancy, Honoraria; Roche: Honoraria; Sanofi: Consultancy, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding. Stoelzel:Neovii: Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192529 ◽  
Author(s):  
Kelly D. Getz ◽  
Tamara P. Miller ◽  
Alix E. Seif ◽  
Yimei Li ◽  
Yuan-Shung V. Huang ◽  
...  

1993 ◽  
Vol 11 (8) ◽  
pp. 1448-1457 ◽  
Author(s):  
W G Woods ◽  
N Kobrinsky ◽  
J Buckley ◽  
S Neudorf ◽  
J Sanders ◽  
...  

PURPOSE Childrens Cancer Group (CCG) protocol 2861 was designed to test the feasibility of aggressively timed induction therapy followed by autologous or allogeneic bone marrow transplantation (BMT) as the sole postremission therapy for newly diagnosed children with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). PATIENTS AND METHODS Between April 1988 and October 1989, 142 patients were eligible for study. All patients entered received a timing-intensive five-drug induction of dexamethasone, cytarabine (Ara-C), thioguanine, etoposide, and daunorubicin (DCTER) over 4 days with a second cycle administered after 6 days of rest, irrespective of hematologic status at that time. Most patients subsequently received a second two-cycle induction course. Those who achieved remission were eligible for bone marrow ablative therapy with busulfan and cyclophosphamide, followed by 4-hydroperoxy-cyclophosphamide (4-HC)-purged autologous or allogeneic BMT rescue. RESULTS One hundred eight (76%) patients achieved remission: 19 (13%) died of complications of the leukemia and/or chemotherapy, and 15 (11%) failed to achieve remission. Seventy-four patients subsequently underwent BMT with either autologous (n = 58) or allogeneic (n = 16) rescue. For patients who received autologous rescue with 4-HC-purged grafts, the actuarial disease-free survival (DFS) rate at 3 years from the day of transplant is 51%, compared with 55% for patients who received allogeneic grafts (P = .92). At 3 years, the overall actuarial survival rate for all 142 patients entered on this study is 45%, with an event-free survival (EFS) rate of 37%. Adverse prognostic factors for outcome included an elevated WBC count or the presence of CNS leukemia at the time of AML diagnosis. CONCLUSION Results suggest that aggressively timed induction therapy followed by marrow ablation and BMT rescue with either autologous or allogeneic grafts for children with newly diagnosed AML or MDS is both feasible and effective.


2015 ◽  
Vol 21 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Megan Othus ◽  
Frederick R. Appelbaum ◽  
Stephen H. Petersdorf ◽  
Kenneth J. Kopecky ◽  
Marilyn Slovak ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 71-71 ◽  
Author(s):  
Brunangelo Falini ◽  
Vera Grossmann ◽  
Enrico Tiacci ◽  
Antony Holmes ◽  
Alexander Kohlmann ◽  
...  

Abstract Abstract 71 Acute myeloid leukemia (AML) with normal cytogenetics (CN-AML) represents about half of all adult AML. NPM1 and CEBPA mutations define WHO provisional entities accounting for ∼60% of CN-AML, but the remaining cases (∼40%) remain poorly characterized. To address this issue, we carried out whole-exome-sequencing (WES) of leukemic and normal cells from one patient with CN-AML that lacked mutations in NPM1, CEBPA, FLT3-ITD, and MLL-PTD. Using this approach, we identified a clonal somatic mutation of BCOR, a gene located on chromosome Xp11.4, that was present in the leukemic but not normal cells of the index AML case. The BCOR (BCL6 co-repressor) gene encodes for an ubiquitously expressed nuclear protein that is involved in repressing the activity of BCL6 and other transcriptional factors. BCOR is a key transcriptional regulator of early embryonic development, mesenchymal stem cell function and hemopoiesis. Germline mutations of BCOR are responsible for the oculo-facio-cardio-dental (OFCD) genetic syndrome that is inherited in an X-linked pattern and comprises microphtalmia, dysmorphic appearance, dental abnormalities (radiculomegaly), hammer-toe deformity and cardiac defects. WES findings in the index case were subsequently validated and further studied in a total cohort of 514 AML patients. We first performed deep-sequencing analyses of all exons of the BCOR gene in an initial set of 82 AML cases that were selected because they showed the same genetic characteristics of our index patient (i.e. normal karyotype without NPM1, CEBPA, FLT3-ITD and MLL-PTD mutations). Disruptive BCOR mutations (i.e., nonsense mutations, out-of-frame small indels, and consensus splice-site mutations) were detected in 14/82 (17.1%) of these cases. We next assessed the frequency of BCOR mutations in a series of unselected CN-AML patients (n=262) and found that they occurred in 4.2% of cases, mostly showing the typical features of BCOR-mutated cases (absence of NPM1, CEBPA, FLT3-ITD and MLL-PTD mutations). Almost mutual exclusion of BCOR and NPM1 mutations was further confirmed in a separate series of 71 NPM1-mutated only AML patients. No BCOR mutations were observed in the 89 AML cases with recurrent cytogenetic abnormalities investigated, including t(8;21)(q22;q22) (n= 29), inv(16)(p13q22) (n=40), t(15;17)(q22;q12) (n=10), and t(11q23)/MLL (n=10), and in the 10 patients with double CEBPA-mutated AML studied. BCOR mutations were: i) scattered across the whole length of the coding sequence with no hotspots identified; ii) somatic in origin and disruptive molecular events similar to germline BCOR mutations causing the OFCD genetic syndrome; iii) associated with markedly decreased BCOR mRNA levels, absence of full-length BCOR and absent or low expression of a truncated BCOR protein; iv) almost mutually exclusive with NPM1 (only 1.5% of the 197 NPM1-mutated AML investigated carried BCOR mutations); v) rarely associated with FLT3-ITD; and vi) frequently associated with DNMT3A and RUNX1 mutations, suggesting cooperation with the respective mutated pathways. Clinically, BCOR mutations correlated with poor outcome among the cohort of 160 CN-AML patients evaluated (28.0% versus 66.3% overall survival at 2 years, P=0.024). We also searched for BCOR mutations in the human AML cell lines OCI-AML2, OCI-AML3, KG1a, U937, HL-60, HL-60R, HB4, AML193, and MVP-11. Only HL-60 and HL-60R (a ATRA-resistant derivative of HL-60) carried a BCOR mutation that consisted of a hemizygous G to T transition at position 4616 in exon 10, leading to the Glu1442X nonsense mutation. Western blot analysis of HL-60 cells resulted in the absence of the full-length BCOR protein (predicted MW: 192 kDa) and presence of a low intensity 156 kDa band likely corresponding to a truncated BCOR protein. In conclusion, our results implicate for the first time BCOR in the pathogenesis of CN-AML and suggest it may act as tumor suppressor gene. Disclosures: Grossmann: MLL Munich Leukemia Laboratory: Employment. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3602-3602
Author(s):  
Agnieszka Pluta ◽  
Tadeusz Robak ◽  
Agata Wrzesien-Kus ◽  
Bozena Katarzyna Budziszewska ◽  
Kazimierz Sulek ◽  
...  

Abstract Abstract 3602 Background: AML in elderly patients is associated with very poor prognosis. The best treatment option for this group of patients is not established, yet. The intensity of treatment depends on performance status and comorbidities. The previous PALG AML study showed that addition of cladribine (2CdA) to conventional induction therapy; especially in patients above 40 yrs, is associated with better outcome (Ho3owiecki 2004). Based on this observation we designed a study addressed to newly diagnosed AML patients above 60 yrs old, who were fit enough to intensive treatment. Aim: To verify whether addition of 2CdA has an impact to clinical outcome in newly diagnosed AML patients older than 60 years old. Methods: From October 2004 to November 2011, 178 patients from 16 hematological PALG centers were randomly assigned to DA induction therapy consisting of daunorubicine (DNR) 45mg/m2, intravenously (iv), day 1–3 and cytarabine (AraC) 100 mg/m2, iv, day 1–7 (DA) or DA with addition of 2CdA 5mg/m2, iv, day 1–5 (DAC). Patients, who achieved complete remission (CR), received one course of consolidation with mitoxantron 6mg/m2 iv day1–2 and AraC 100mg/m2 iv day 1–5, followed by six cycles of maintenance consisting of (DNR 30mg/m2 iv day 1–2 with AraC 100mg/m2 sc day 1–5 and tioguanine 100mg/m2, p.o., twice day, day 1–5 with AraC 100mg/m2 s.c. day 1–5, alternately). Response criteria were determined according to revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia (Chesson 2003). Statistical analysis: Pairwise comparisons between patient characteristics were performed by the Mann-Whitney U-test for continuous variables and by χ2-statistics or Fisher's exact test for categorical variable. The Kaplan-Meier estimates of survival were calculated and compared using the log-rank test. For multivariate analysis, the Cox proportional hazard regression model was applied. P values < 0.05 were considered significant. Results: 88 pts with median age 66 yrs (range 60–79 yrs) were randomized to DA and 90 pts with median age 64 yrs (range 60–79 yrs) was enrolled to DAC schema. The both groups were comparable in terms of age, sex, performance status, white blood cell count, hemoglobin level, platelets count, tumor burden parameters, cytogenetic, between the both groups. The overall CR rate was 38%. In DA and DAC groups CR was achieved in 33% and 43% pts, respectively (p=0.12). However, in patients under 65 yrs the trend towards higher CR rate in DAC arm than DA group was observed (47% vs. 29%, p=0.09). In pts above 65 yrs the CR rate was comparable (39% vs. 38%, p=0.8). The efficacy and hematological toxicity in DA and DAC groups was similar (Table 1). Also no statistical significant differences in non-hematological toxicity were observed (data not shown). Early deaths in DA and DAC did not differ significantly. Median overall survival (OS) in DA and DAC arm was also similar in both groups (Table 1). In proportional hazard Cox analysis only age under 65yo, CR achievement and WBC above 100G/L were important for better OS (p=0.02, p<0.001 and p=0.09). The presence of dysplastic changes, karyotype, LDH, number of bone marrow blasts did not influenced OS. Conclusions: Our data suggest that prolonged overall survival can be achieved in elderly AML patients mainly till 65yrs. Intensive therapy, especially in patients older than 65yrs, may be associated with high number of complications what results withdrawing from intensive treatment protocol. Hematological and non-hematological toxicity of DA and DAC schema is comparable, however higher CR rate in DAC group in patient till 65yrs may suggest, that addition of 2CdA to DA does not increase toxicity and may be a treatment option in this patient population. Disclosures: Wiktor-Jedrzejczak: Janssen-Cilag: Consultancy; Amgen: Consultancy; Novartis: Consultancy, Speakers Bureau; Pfizer: Consultancy; Bayer: Consultancy; Genopharm: Speakers Bureau; Celgene: Speakers Bureau; Genzyme: Speakers Bureau; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2582-2582 ◽  
Author(s):  
Frauke Bellos ◽  
Bruce H. Davis ◽  
Naomi B. Culp ◽  
Birgitte Booij ◽  
Susanne Schnittger ◽  
...  

Abstract Background Nucleoside analogs depend on cellular hENT1 expression for entry into cells and cytotoxic activity. Studies suggest low cellular hENT1 levels correlate with poor response to such chemotherapies in solid tumors, data on AML and MDS is scarce. Aim To examine hENT1 expression by multiparameter flow cytometry (MFC) in newly diagnosed AML and MDS and correlate results to morphologic, cytogenetic (CG) and molecular genetic (MG) findings. To examine hENT1 expression with respect to clinical outcome in AML patients (pts) treated with intensive cytarabine-based chemotherapy (CHT). Methods We studied pts with newly diagnosed AML (n=145) and MDS (n=96), 133/108 male/female, median age 67.3 (AML) and 73.3 years (MDS). CG was done in 130 AML and 86 MDS. Pts included 107 de novo AML, 9 t-AML, 29 s-AML; FAB: 9 M0, 27 M1, 50 M2, 9 M3, 21 M4, 8 M4eo, 7 M5, 14 not classified; by CG (MRC): 21 favorable, 75 intermediate, 34 adverse. 91 were de novo MDS, 5 t-MDS; 1 RARS, 17 RCMD-RS, 37 RCMD, 3 5q- syndrome, 3 RAEB-1, 5 RAEB-2, 1 CMML, 24 not classified; 2 IPSS-R very low, 55 IPSS-R low, 8 IPSS-R intermediate, 8 IPSS-R high, 13 IPSS-R very high. hENT1 expression was quantified by a novel four color intracellular staining assay using monoclonal antibodies against hENT1, CD45, CD64 and myeloperoxidase. Median fluorescence intensities (MFI) of hENT1 were determined in myeloid progenitors (MP), granulocytes (G) and monocytic cells (Mo) and correlated to hENT1 MFI in lymphocytes to derive hENT1 index (index). Results No correlation of index to age, gender, hemoglobin level or counts for blasts, WBC or platelets was detected. In AML, we generally saw higher index by trend in the more favorable prognostic subgroups. M3/t(15;17)/PML-RARA+ displayed higher index in MP than non-M3 AML (4.24 vs 2.56, p<0.001). G index was lower in M0 (3.01) vs M1, M2, M4 and M4eo (5.66, 4.34, 5.35, 4.77; p=0.01, 0.028, 0.004, 0.043, respectively) and in M2 compared to M1 and M4 (4.34. vs 5.66 and 5.35, p=0.01 and 0.033, respectively). M2 showed lower MP index than M5 (2.42 vs 2.99, p=0.016). Considering CG, index in MP was higher in favorable vs intermediate and adverse pts (3.05 vs 2.58 and 2.53, p=0.034 and 0.023, respectively), Mo index was higher ín favorable vs adverse pts (3.17 vs 2.71, p=0.044). By MG, higher index in Mo and G was observed in RUNX1-RUNX1T1+ AML (4/83, 4.32 vs 3.04, p=0.01; 8.16 vs 4.60, p=0.002, respectively). Higher index for MP was found in FLT3-ITD mutated (mut) (18/111; 3.19 vs 2.62, p=0.012), CEPBA mut (4/26, 3.15 vs 2.35, p=0.004) and for Mo in NPM1 mut AML (23/104; 3.72 vs 2.84, p=0.02), whereas lower index for MP was found in RUNX1mut pts (13/65; 2.17 vs 2.59, p=0.031). De novo AML displayed higher MP index than s-AML (2.7 vs 2.28, p=0.008). Using lowest quartile of index for MP (2.1185) as cut-off, AML pts in the MRC intermediate group treated with CHT (n=38) had inferior OS if MP index was below vs above this cut-off (OS at 6 months 63% vs. 95%, p=0.017, median follow up 4.6 months). MDS showed lower Mo and MP index than AML (2.68 vs 2.96, p=0.021, 1.84 vs 2.65, p<0.001, respectively). By IPSS-R, significance was reached for higher index in Mo and MP in very low risk compared to low risk pts (3.39 vs 2.54, p=0.013 and 4.07 vs 1.78, p<0.001, respectively), MP in very low compared to intermediate and high risk pts (4.07 vs 1.95, p=0.004; 4.07 vs 1.76, p=0.002), and MP and G in very low vs very high risk pts (4.07 vs 1.71, p=0.005; 5.86 vs 3.85, p=0.001, respectively). IPSS-R intermediate vs poor and very poor showed lower G index (5.47 vs 3.59, p=0.018 and vs 3.85, p=0.034 respectively). Conclusion AML with genetic and molecular genetic good risk profile had higher hENT1 expression in MP, G and Mo, suggesting a causal mechanism for better response to CHT and better outcome. Consequently, AML with poor risk molecular genetics (RUNX1 mut) showed lower levels of hENT1 in MP. The detection of higher levels in FLT3-ITD mut pts is in line with reportedly good response to CHT, overall worse outcome being mostly due to early relapses. Strikingly, we saw differences in outcome in pts treated with CHT according to hENT1 expression with shorter OS in pts with low index for MP. Higher index in de novo AML than s-AML and MDS may be causal for better response to nucleoside-based CHT in de novo AML. Data for MDS may be interpreted accordingly, lower risk cases showing higher index in MP, G and Mo. Further analyses are needed to explore hENT1 expression in AML and MDS more comprehensively. Disclosures: Bellos: MLL Munich Leukemia Laboratory: Employment. Davis:Trillium Diagnostics, LLC: Equity Ownership. Culp:Trillium Diagnostics, LLC: Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 7073-7073
Author(s):  
W. M. McHayleh ◽  
R. Redner ◽  
R. Sehgal ◽  
A. Raptis ◽  
M. Agha ◽  
...  

7073 Background: The goal of induction chemotherapy in acute myeloid leukemia (AML) is complete remission with restoration of normal bone marrow. If residual leukemia is present after the first course of induction therapy, patients receive a second course identical to the first or receive a non-cross resistant antileukemic regimen. Methods: In a retrospective study of adult patients with newly-diagnosed AML treated at the University of Pittsburgh Cancer Institute between December 2002 and May 2008, we evaluated the efficacy and toxicity of mitoxantrone (10 mg/m2/d) and etoposide (100 mg/m2/d), both administered intravenously within 5 days as second course therapy of patients not responding to first-course induction therapy with cytarabine and idarubicin. Univariate and multivariate associations between patient characteristics and complete response (CR) were assessed by logistic regression, with overall- and relapse-free survival estimated by Kaplan-Meier analysis. Results: 74 AML patients (mean age 56 years, range: 18–73 years) completed treatment with etoposide and mitoxantrone; 29 (39%) achieved CR. Lower CR rate was associated with unfavorable cytogenetic risk status at diagnosis and higher percent blasts prior to treatment with mitoxantrone and etoposide. Ten (14%) patients died due to infectious complications. No grade 3 or 4 hepatic toxicities were observed. One patient developed grade 3 cardiac toxicity. Median duration of neutrophil recovery following therapy in patients achieving CR was 29 days. Median overall survival was 9.0 months (95% CI 5.8–14.9 months). The 29 patients who achieved CR received postremission therapy: 16 of these eventually relapsed, while 4 others died without evidence of relapse. Median duration of relapse-free survival in these 29 patients was 11.0 months (95% CI: 9.0–19.3 months). Conclusions: Our study suggests that the combination of etoposide and mitoxantorne is an active and well-tolerated regimen as second-course therapy in newly diagnosed AML patients who have persistent leukemia after a first course of induction therapy with cytarabine and idarubicin. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document