CD34+ Subclasses of Blood Stem Cell Grafts Collected After Plerixafor Injection in Non-Hodgkin Lymphoma (NHL) Patients Mobilizing Poorly with Chemotherapy Plus G-CSF

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2990-2990
Author(s):  
Esa Jantunen ◽  
Ville Varmavuo ◽  
Piia Valonen ◽  
Taru Kuittinen ◽  
Tapio Nousiainen ◽  
...  

Abstract Abstract 2990 Background: Mobilization of blood stem cells is difficult in a subgroup of patients with standard methods. Plerixafor, a CXCR4 antagonist, has been used for stem cell mobilization in combination with G-CSF for some years. Mobilization method used may affect not only efficacy of stem cell mobilization and collection but also graft content which on the other hand may have effect on post-transplant outcomes. No data is available on CD34+ subclasses in grafts collected after plerixafor administration in patients who mobilize poorly with chemotherapy plus G-CSF. Patients and Methods: Altogether blood stem cell grafts collected from 26 NHL patients were studies. Thirteen patients (8 M, 5 F, median age 51 yrs) were mobilized with a combination of chemotherapy and G-CSF ad received plerixafor due to poor mobilization followed by stem cell apheressis. Thirteen patients (10 M, 3 F, median age 56 yrs) were mobilized with chemotherapy plus G-CSF without plerixafor and served as controls. Samples from the first collection after plerixafor and from the first apheresis of control patients were studied by flow cytometry using the following antibodies: CD34, CD38, CD 117, CD133, CD19 and CD45. Viability of CD34+ cells after freezing was assessed with 7-aminoactinomycin D staining. Also in vitro growth of granulocyte/macrophage progenitors (GM-CFU) were assessed from all grafts. Patients were followed after high-dose chemotherapy in regard to hematopoietic reconstitution. Results: The number of viable cells in the grafts was comparable between the plerixafor and the control groups (Table 1). The number of the most primitive stem cells (CD34+CD38−CD133+) was higher in plerixafor mobilized grafts (Table 1). Most of the CD34+ cells were myeloid progenitors, as defined by their CD117 antigen co-expression. No differences in GM-CFU were observed between the groups. All except one patient had received high-dose therapy. The median number of CD34+ cells collected from the patients was comparable (3.1 vs. 3.3 × 106/kg). The median time to reach neutrophils > 10 × 109/L was 10 days from the stem cell infusion in both groups and time to unsupported platelets was also comparable (16 d vs. 13 d). Platelet counts at 1 month, 3 months and 6 months were comparable between the groups. Absolute lymphocyte counts were higher in plerixafor group but the differences were not statistically significant. One early toxic death occurred in the plerixafor mobilized group and one death due to disease recurrence in both groups with a median follow-up of 301 and 348 days from stem cell infusion in prelixafor and control groups, respectively. Conclusions: Plerixafor added to chemomobilization in NHL patients resulted in higher number of the most primitive CD34+ cells in the graft with comparable in vitro growth and engraftment potential after BEAM chemotherapy when compared to patients mobilized without plerixafor. Longer follow-up of higher patient numbers are needed to evaluate whether differences in graft content have an effect on patient outcomes. Disclosures: Jantunen: Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4516-4516
Author(s):  
Esha Kaul ◽  
Gunjan L Shah ◽  
Chakra P Chaulagain ◽  
Raymond L. Comenzo

Background Risk-adapted melphalan and stem cell transplant (SCT) is standard initial therapy for a minority of patients with systemic AL amyloidosis (Blood 2013;121: 5124; Blood 2011;118: 4298). Stem cell mobilization is often accomplished with high dose G-CSF (16μg/kg/d) (Blood 2011;118:4346). In the current era with effective new agents such as bortezomib, many AL patients are receiving initial therapy and achieving profound rapid cytoreduction with organ improvement (Blood 2012;119:4391; Blood 2011;118:86). But not all patients respond and in some cases the duration of response is limited. In addition, the use of SCT for consolidation after an initial response, although reasonable, has not been systematically evaluated. Whether SCT is employed as consolidation or as a second- or third-line option, the efficacy and tolerance of mobilization become important issues. Because AL patients have organ involvement limiting chemotherapy-based mobilization options, we decided to explore the option of Plerixafor and G-CSF for stem cell mobilization, based on the phase III experience in MM (Blood 2009;113:5720). We now report the first experience with this mobilization approach in AL. Patients and Methods Patients were evaluated and diagnosed by standard criteria including, in all cases, tissue biopsies showing amyloidosis. They were mobilized and collected between 4/16/12 and 6/19/13 with G-CSF 10μg/kg/d subcutaneously (SC) for 5 days (continued through collection process) and Plerixafor adjusted for renal function starting on day 4 and continuing until collection was completed. Results We report on 10 patients whose median age at mobilization was 58 years (range 46-72), 60% of whom were men. Median number of organs involved was 2 (range 1-3). Heart and kidneys were the most frequently involved organs (7 patients in each group). Median time from diagnosis to mobilization was 9 months (range 2-123). Eight patients had received prior bortezomib-based therapy. The median number of cycles was 3 (range 0-6). One had received a prior MEL 140 transplant 10 years prior and had relapsed, and 2 were treatment naïve, one of whom was 1 year status post orthotopic heart transplant. At the time of mobilization, 3 patients had non-responsive hematologic disease, 3 had achieved PR, 1 VGPR and 1 had achieved CR. Five patients had a creatinine ≥ 1.5 mg/dL including 2 patients on hemodialysis. The target cell dose was 10x106CD34/kg for all but one patient (with previous history of transplantation). The median number of collections was 2 (range 2-3). On day one, the median number of CD34+ cells collected per kg was 3.6 x106 (0.4-6x106) and on day two 6.4 x106 (2.7-19x106). The median total CD34+ cells collected per kg was 12.5x106 (5-18x106). Two patients had grade 1 bleeding from the catheter site during apheresis and one patient had dyspnea with suspected fluid overload which responded to a single dose of intravenous furosemide. There were no significant toxicities observed with Plerixafor in mobilization. All patients went on to receive high dose chemotherapy with melphalan followed by autologous stem cell transplant. The median length of hospital stay was 25 days (18-32). The median stem cell dose infused was 7.6x106CD34/kg and median days to ANC > 500 was 11 (10-22), to platelets > 20K untransfused 22 (15-44) and to lymphocytes > 500/μl 14.5 (11-25). One patient who had VOD and persistent thrombocytopenia was given the remainder of his stem cells on day +31 with full recovery and normalization of the blood counts by day +65. Conclusions In the era of more effective initial therapies, an era in which AL patients are living longer, many with moderate organ damage, mobilization with Plerixafor and G-CSF was well tolerated and made it possible to collect ample numbers of CD34+ cells with limited leukaphereses in previously treated patients and in those with advanced renal failure. This approach not only allowed the collection of sufficient CD34+ cells for optimal immediate stem cell dosing but also permitted the cryopreservation of aliquots for post-SCT boost and potentially for future cell-based therapies. Disclosures: Comenzo: Millenium: Membership on an entity’s Board of Directors or advisory committees, Research Funding; Prothena: Research Funding; Teva: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3852-3852
Author(s):  
Gwendolyn van Gorkom ◽  
Herve Finel ◽  
Sebastian Giebel ◽  
David Pohlreich ◽  
Avichai Shimoni ◽  
...  

Abstract Introduction: Autologous stem cell transplantation (ASCT) is the standard of care for many patients with relapsed chemosensitive lymphoma. Peripheral blood stem cells have become the main source for the ASCT worldwide, because of its advantages over bone marrow. Several risk factors have been identified for poor stem cell mobilization, and diagnosis of lymphoma is one of the most important ones, with an inadequate stem cell harvest reported in 4 to 25% of the cases. Even though stem cell mobilization in relapsed lymphoma patients can be relatively difficult, mobilization strategies have not been standardized and there is a significant variation amongst centers. The aim of this non-interventional prospective clinical study was to review the mobilization strategies used by EBMT centers in relapsed lymphoma and to evaluate the failure rates. Methods: All EBMT centers were invited to participate in this non-interventional prospective clinical study that was started in 2010 and ended in 2014. Centers were requested to collect data on all consecutive patients with relapsed lymphoma considered to be candidates for an ASCT and were 18 years of age or older. Data collected included age, sex, diagnosis, number of prior chemotherapy regimens, mobilization regimen, collected CD34+ cells and marrow harvests. Results: In total, 275 patients with relapsed lymphoma from 30 EBMT centers were registered for this study. There were 158 males and 117 females with a median age of 51 (range 18 – 77) years; 181 patients (66%) with non-Hodgkin’s lymphoma (NHL) (DLBCL 28%, FL 17%, MCL 6%, PTL, 3%, other 12%) and 94 patients (34%) with Hodgkin’s lymphoma (HL). The median number of chemotherapy lines received before this relapse was one (range 1 – 8). 263 patients (96%) were mobilized with chemotherapy + G-CSF being DHAP (43%) and ESHAP (11%) the most frequent protocols, and 12 patients (4%) were mobilized with G-CSF alone. Thirteen patients (5%) who were mobilized with chemotherapy + G-CSF, received additional PLX in the first mobilization. These were all patients that were mobilized with chemotherapy as part of the mobilization regimen. Thirty patients (11%) failed to mobilize adequate stem cells (<2 x 10⁶ CD34+ cells/kg) during first mobilization despite the use of PLX in four patients. The median number of stem cells collected at first mobilization was 5.6 x 10⁶ CD34+ cells/kg (range: 0 – 82). In 255 patients (92.7%) only one mobilization course was given, 18 patients (6.5%) had two mobilization courses, 2 patients (0.7%) underwent three mobilization courses. Three patients had a mobilization failure after only G-CSF; they all were successfully harvested in a second attempt after chemotherapy + G-CSF. Five of the patients failing the first mobilization with chemotherapy + G-CSF received PLX at second mobilization, but only three succeeded. One patient failed both first and second mobilization and received PLX at third mobilization without success. 22 patients (8%) still had an inadequate amount of stem cells in the end. Of those, only 4 patients (1.5%) underwent bone marrow harvest. Conclusion: In the EBMT centers participating in this study, a primary mobilization strategy based on the combination of salvage chemotherapy plus G-CSF was used for virtually all patients with relapsed lymphoma. PLX was used in only 5% of the mobilization procedures during the time period analyzed. With 11% after the first mobilization attempt and 8% after several attempts, the failure rate was relatively low. Disclosures van Gorkom: Sanofi: Research Funding. Sureda:Takeda Pharmaceuticals International Co.: Consultancy, Honoraria, Speakers Bureau; Seattle Genetics, Inc.: Research Funding.


Blood ◽  
2003 ◽  
Vol 102 (5) ◽  
pp. 1595-1600 ◽  
Author(s):  
Roberto M. Lemoli ◽  
Antonio de Vivo ◽  
Daniela Damiani ◽  
Alessandro Isidori ◽  
Monica Tani ◽  
...  

AbstractWe assessed the hematopoietic recovery and transplantation-related mortality (TRM) of patients who had failed peripheral blood stem cell mobilization and subsequently received high-dose chemotherapy supported by granulocyte colony-stimulating factor (G-CSF)–primed bone marrow (BM). Studied were 86 heavily pretreated consecutive patients with acute leukemia (n = 21), refractory/relapsed non-Hodgkin lymphoma (n = 41) and Hodgkin disease (n = 17), and multiple myeloma (n = 7). There were 78 patients who showed insufficient mobilization of CD34+ cells (&lt; 10 cells/μL), whereas 8 patients collected less than 1 × 106 CD34+ cells/kg. BM was primed in vivo for 3 days with 15 to 16 μg/kg of subcutaneous G-CSF. Median numbers of nucleated cells, colony-forming unit cells (CFU-Cs), and CD34+ cells per kilogram harvested were 3.5 × 108, 3.72 × 104, and 0.82 × 106, respectively. Following myeloablative chemotherapy, median times to achieve a granulocyte count higher than 0.5 × 109/L and an unsupported platelet count higher than 20 and 50 × 109/L were 13 (range, 8-24), 15 (range, 12-75), and 22 (range, 12-180) days, respectively, for lymphoma/myeloma patients and 23 (range, 13-53), 52 (range, 40-120), and 90 (range, 46-207) days, respectively, for leukemia patients. Median times to hospital discharge after transplantation were 17 (range, 12-40) and 27 (range, 14-39) days for lymphoma/myeloma and acute leukemia patients, respectively. TRM was 4.6%, whereas 15 patients died of disease. G-CSF–primed BM induces effective multilineage hematopoietic recovery after high-dose chemotherapy and can be safely used in patients with poor stem cell mobilization.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5823-5823
Author(s):  
Ahmad Antar ◽  
Zaher Otrock ◽  
Mohamed Kharfan-Dabaja ◽  
Hussein Abou Ghaddara ◽  
Nabila Kreidieh ◽  
...  

Abstract Introduction: The optimal stem cell mobilization regimen for patients with multiple myeloma (MM) remains undefined. Most transplant centers use either a chemo-mobilization strategy using cyclophosphamide (CY) and granulocyte-colony stimulating factor (G-CSF) or a steady state strategy using G-CSF alone or with plerixafor in case of mobilization failure. However, very few studies compared efficacy, toxicity and cost-effectiveness of stem cell mobilization with cyclophosphamide (CY) and G-CSF versus G-CSF with preemptive plerixafor. In this study, we retrospectively compared our single center experience at the American University of Beirut in 89 MM patients using fractionated high-dose CY and G-CSF as our past preferred chemo-mobilization strategy in MM patients with our new mobilization strategy using G-CSF plus preemptive plerixafor. The change in practice was implemented when plerixafor became available, in order to avoid CY associated toxicity. Patients and methods: Patients in the CY group (n=62) (Table 1) received either fractionated high-dose CY (n=56) (5g/m2 divided in 5 doses of 1g/m2 every 3 hours) or CY at 50mg/kg/day for 2 doses (n=6). G-CSF was started on day +6 of chemotherapy at a fixed dose of 300 µg subcutaneously every 12 hours. All patients in the plerixafor group (n=27) (Table 1) received G-CSF at a fixed dose of 300 µg subcutaneously every 12 hours daily for 4 days. On day 5, if peripheral blood CD34+ was ≥ 20/µl, apheresis was started immediately. Plerixafor (240 µg/kg) was given 7-11 hours before the first apheresis if CD34+ cell count on peripheral blood on day 5 was <20/µl and before the second apheresis if CD34+ cells on the first collect were <3х106/kg. The median number of prior therapies was 1 (range: 1-3) in both groups. Results: Compared with plerixafor, CY use was associated with higher median peak peripheral blood CD34+ counts (35 vs 111 cells/µl, P= 0.000003), and total CD34+ cell yield (7.5 х 106 vs 15.9 х 106 cells/kg, P= 0.003). All patients in both groups collected ≥4x106 CD34+ cells/Kg. Moreover, 60 (96.7%) and 46 (74.2%) patients in the CY group vs 24 (88.8%) and 6 (22%) patients in the plerixafor group collected >6х106 and >10x106 CD34+ cells/kg, respectively (P=0.16; P<0.00001). Only 4 (6.4%) patients required two apheresis sessions in the CY group compared to 11 (40%) in the plerixafor group (P=0.0001). Conversely, CY use was associated with higher frequency of febrile neutropenia (60% vs 0%; P<0.00001), blood transfusions (27% vs 0%; P<0.00001), platelets transfusion (25% vs 0%; P<0.00001) and hospitalizations (64% vs 0%; P<0.00001). No one required intensive level of care and all recovered. Autografting was successfully performed in all patients using high-dose melphalan with a median time from mobilization to the first transplant of 31 days (range: 16-156) in the CY group compared to 13 days (range: 8-40) in the plerixafor group (P=0.027); and median infused CD34+ cells were 7х106/kg (range: 3.1-15.3) versus 5.27 (2.6-7.45), respectively (P=0.002). The average total cost of mobilization using the adjusted costs based on National Social Security Fund (NSSF) prices in Lebanon in the plerixafor group was slightly higher compared with the CY group ($7964 vs $7536; P=0.16). Conclusions: Our data indicate robust stem cell mobilization in MM patients with either fractionated high-dose CY and G-CSF or G-CSF alone with preemptive plerixafor. The chemo-mobilization approach was associated with two-fold stem cell yield, slightly lower cost (including cost of hospitalization) but significantly increased toxicity. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 541-541
Author(s):  
Geoffrey L. Uy ◽  
Nicholas M. Fisher ◽  
Steven M. Devine ◽  
Hanna J. Khoury ◽  
Douglas R. Adkins ◽  
...  

Abstract Bortezomib (VELCADE®) is a selective inhibitor of the 26S proteasome proven to be safe and effective in the treatment of relapsed or refractory multiple myeloma (MM). While high-dose chemotherapy with autologous hematopoietic stem cell transplant (AHSCT) remains the standard of care, there is considerable interest in incorporating bortezomib into the initial treatment of MM. However, the role of bortezomib in frontline therapy for MM will depend in part on its effects on subsequent stem cell mobilization and engraftment. We conducted a pilot study of bortezomib administered pretransplant followed by high-dose melphalan with AHSCT. Two cycles of bortezomib 1.3 mg/m2 were administered on days 1, 4, 8, and 11 of a 21-day treatment cycle. One week after the last dose of bortezomib, stem cell mobilization was initiated by administering filgrastim 10 mcg/kg/day subcutaneously on consecutive days until stem cell harvest was completed. Stem cell collection began on day 5 of filgrastim via large volume apheresis (20 L/day) performed daily until a minimum of 2.5 x 106 CD34+ cells/kg were collected. Patients were subsequently admitted to the hospital for high-dose melphalan 100 mg/m2/day x 2 days followed by reinfusion of peripheral blood stem cells 48 hours later. Sargramostim 250 mcg/m2/day subcutaneously was administered starting day +1 post-transplant and continued until the absolute neutrophil count (ANC) ≥ 1,500/mm3 for 2 consecutive days. To date, 23 of a planned 40 patients have been enrolled in this study with 19 patients having completed their initial therapy with bortezomib followed by AHSCT. Patient population consists of 16 male and 7 female patients with the median age at diagnosis of 58 years (range 38–68). Myeloma characteristics at diagnosis were as follows (number of patients): IgG (16), IgA (7) with stage II (9) or stage III (14) disease. Prior to receiving bortezomib, 11 patients were treated with VAD (vincristine, Adriamycin and dexamethasone) or DVd (Doxil, vincristine and dexamethasone), 5 patients with thalidomide and 5 patients with both. Two patients did not receive any prior chemotherapy. All patients successfully achieved the target of 2.5 x 106 CD34+ cells/kg in either one (15/19 patients) or two (4/19 patients) collections with the first apheresis product containing a mean of 5.79 x 106 CD34+ cells/kg. Analysis of peripheral blood by flow cytometry demonstrated no significant differences in lymphocyte subsets before and after treatment with bortezomib. Following AHSCT, all patients successfully engrafted with a median time to neutrophil engraftment (ANC ≥ 500/mm3) of 11 days (range 9–14 days). Platelet engraftment (time to platelet count ≥ 20,000/mm3 sustained for 7 days without transfusion) occurred at a median of 12 days (range 9–30 days). Eleven patients were evaluable for response at 100 days post-transplant. Compared to pre-bortezomib paraprotein levels, 3 patients achieved a CR or near CR, 7 maintained a PR while 1 patient developed PD. We conclude that pretransplant treatment with 2 cycles of bortezomib does not adversely affect stem cell yield or time to engraftment in patients with MM undergoing AHSCT. Updated results and detailed analysis will be available at the time of presentation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5815-5815
Author(s):  
Jacob P. Laubach ◽  
Revital Freedman ◽  
Robert A Redd ◽  
Mason Tippy ◽  
Kristen Cummings ◽  
...  

Abstract Background: Administration of recombinant human thrombopoietin (rhTPO) with G-CSF for stem cell mobilization is associated with high CD34+ stem cell yield, rapid neutrophil recovery following autologus transplantation (ASCT), and decreased red blood cell (rbc) and platelet (plt) transfusions (Solomo, G. et al. Blood 1999). However, clinical development of rhTPO was complicated by the formation of neutralizing anti-TPO antibodies (Li, J. et al. Blood 2001), prompting discontinuation of further clinical development of recombinant TPO. Eltrombopag (Elt) is an orally bioavailable small molecule thrombopoietin receptor (TPO-R) agonist approved by the FDA for treatment of chronic immune thrombocytopenic purpura (ITP). In vitro studies have demonstrated that Elt promotes megakaryocyte proliferation and differentiation of CD34+ bone marrow progenitor cells (Erickson-Miller CL Stem Cells 2009), suggesting that Elt might be a surrogate for rhTPO for stem cell mobilization. In this pilot trial, we evaluated the combination of Elt plus standard G-CSF and cyclophosphamide (C) for stem cell mobilization in patients (pts) with multiple myeloma (MM), a disease for which ASCT remains a standard of care (Blade et al. Blood 2010). Methods: Primary objectives included determination of the median number of CD34+ cells/kg mobilized and the maximum tolerated dose (MTD) of Elt. Pts had MM that was stable or responsive to at least two cycles of chemotherapy with plans for stem cell mobilization and ASCT. Four pts were to be enrolled in each of four dose escalation arms in which they received 0 (Arm D), 50 (Arm A), 100 (Arm B), or 150 mg (Arm C) of eltrombopag in combination with standard C + G-CSF. Adverse events (AEs) were graded by NCI-CTCAE v4. Results: 17 pts have been screened and enrolled to date. Two patients withdrew consent prior to receiving Elt and were excluded from statistical analysis. 15 patients have completed participation in the study to date and two patients remain to be enrolled in Arm C. The first subject in Arm A experienced delayed engraftment that was determined to be unrelated to ELT; rather, the event was attributed to administration of a one-time high dose of corticosteroid for management of a severe hypersensitivity reaction to DMSO that occurred during stem cell infusion. A second subject in Arm A had undergone mobilization with Elt prior to the previously described delayed engraftment event, and to ensure safety underwent a second mobilization with G-CSF and plerixafor. During ASCT, this patient received cells from the second mobilization procedure. While neither event met criteria for a dose-limiting toxicity, the protocol was amended such that three additional patients enrolled in Arm A underwent two rounds of mobilization - the first with Elt plus C and G-CSF and a second with G-CSF plus plerixafor - and received as part of ASCT cells mobilized with Elt. Each of these patients engrafted successfully. The median number of CD34+ cells/kg collected during the first collection day of apheresis in Arms D, A, B, and C was 8.0, 11.0, 15.3, and 26.4. The median total number of CD34+ stem cells collected following mobilization with Elt plus C and G-CSF in Arms D, A, B, and C was 13.2, 12.7, 15.4, and 26.4. The percentage of patients in Arms D, A, B, and C who achieved a target collection of 8 x 10^6 CD34+ stem cells in one collection day was 50, 60, 75, and 100%. There have been no severe adverse events related to Elt . Conclusions: Administration of Elt in combination with C plus G-CSF for stem cell mobilization in pts with MM undergoing ASCT was safe and well tolerated, with no DLTs or severe AEs attributable to Elt. The small size of this pilot study precludes formal statistical comparison of outcomes across treatment Arms, but there appears to be a trend toward increase in yield of CD34+ cells and decrease in apheresis procedures required with increasing doses of Elt. Disclosures Richardson: Jazz Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1970-1970
Author(s):  
Geoff Hill ◽  
Edward S. Morris ◽  
Maddona Fuery ◽  
Cheryl Hutchins ◽  
Jason Butler ◽  
...  

Abstract The mobilization of stem cells with pegylated-G-CSF (peg-G-CSF) modulates regulatory T cell and NKT cell function, separating graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects in animal models. We have initiated a phase I/II study to analyse the feasibility of mobilizing stem cells from sibling donors with peg-G-CSF and their ability to restore hematopoiesis in HLA matched transplant recipients who have received myeloablative conditioning. Results were compared to a cohort of donors mobilized with standard G-CSF at 10ug/kg/day (n=19). The administration of 6mg of peg-G-CSF (n=6) resulted in suboptimal stem cell mobilization with a peak peripheral blood CD34+ count of 29 ± 4/uL. Apheresis 4 days after peg-G-CSF administration yielded 2.7 ± 0.3 x106 CD34+ cells/kg recipient ideal body weight and all patients required a second collection on day 5 to yield a total of 4.0 ± 0.5 x106 CD34+ cells/kg recipient weight. Following escalation of the dose to 12mg (n=9), the peak CD34+ count was 109 ± 13/uL and all donors collected sufficient stem cells for transplantation in a single apheresis (9.8 ± 1.7 x106 CD34+ cells/kg recipient weight). The 6mg dose of peg-G-CSF was significantly inferior to standard G-CSF for stem cell mobilization (P<0.01) while the 12mg dose was at least equivalent (P=0.07). Bone pain was similar between the 6mg and 12mg cohorts and to that seen with standard G-CSF. However, in addition to the expected rises in serum ALP and LDH, transient rises in hepatic transaminases were noted 5 to 12 days after peg-G-CSF administration in 7 of 9 donors receiving the 12mg dose. One donor developed NCI grade 3 hepatic toxicity and splenomegaly. After allogeneic transplantation of peg-G-CSF mobilized grafts (Cy/TBI conditioning in 13 of 14 recipients), median neutrophil and platelet engraftment occurred on days 18 and 14 respectively and was identical to that seen with grafts mobilized by standard G-CSF. With a median follow up of 165 days (range 55–532), the incidence of grade II-IV and grade III/IV acute GVHD is 50% and 21% respectively. No patients have relapsed to date and overall survival is 86%. The mobilization of stem cells with peg-G-CSF in normal donors is feasible and 12mg appears the optimal dose. Further data are required to more closely analyse the effect of peg-G-CSF on donor liver function and the ability of stem cell grafts to separate GVHD and GVL effects. Figure Figure


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1968-1968 ◽  
Author(s):  
Karen K. Ballen ◽  
Elizabeth J. Shpall ◽  
David Avigan ◽  
Beow Yeap ◽  
Steve McAfee ◽  
...  

Abstract Autologous stem cell transplantation is curative for many patients with hematologic malignancies. Approximately 20% of patients do not have an adequate stem cell mobilization. Recently, work from our laboratories has shown that parathyroid hormone (PTH) increases osteoblast number and expansion of the stem cell compartment in mice. In murine models, the addition of PTH caused an increase in the absolute number of stem cells. Daily PTH injection caused an increase in the absolute number of murine stem cells and improved survival in transplant recipients of limiting numbers of stem cells. (Nature425: 841, 2003). This observation suggested that PTH might be able to increase stem cell numbers in humans. PTH is an FDA approved drug used for treatment of osteoporosis. In this Phase I study, patients who have collected less than 2 million CD34+ cells/kg after 1 or 2 stem cell mobilization attempts received 14 days of sc PTH, in escalating dose cohorts of 40 mcg, 60 mcg, 80 mcg, and 100 mcg per day, with G-CSF 10mcg/kg/day for the last four days. Patients with >5 CD34+/uL on Day +14 proceeded to stem cell apheresis and autologous stem cell transplant. 14 patients have enrolled on this study, now enrolling at the highest dose cohort, and 12 patients have completed treatment for this analysis with 3 patients per dose cohort. The median age was 57 years (range 24–71 years), and 9 (75%) patients are female. In 10 patients (83%) one attempt at stem cell mobilization failed with either growth factor alone or growth factor plus chemotherapy; in the other 2 patients (17%) two attempts at mobilization failed to attain adequate cells. The diagnoses were as follows: non Hodgkin’s lymphoma (7 patients, 58%), Hodgkin’s disease (5 patients, 42%). There were no dose limiting toxicities defined as calcium > 11.5, ionized calcium > 1.5, phosphate <1.0, or systolic blood pressure less than 80mm Hg. 3 patients had a self-limited fever, one patient had an unexplained eosinophilia, and 1 patient required an admission with fever, rigors, and headache. 6 of 12 patients (50%) achieved the target peripheral CD34 level of 5/uL, of whom 4 underwent stem cell apheresis. The median CD34 cells/uL on Day +14 was 4.3 (range 0–18.8). 2 patients who achieved the target peripheral CD34 level of 5/uL did not complete collections, 1 due to access problems, and 1 due to physician preference. The 4 patients who continued with the study collected a median CD34+ dose/kg of 2.2 x 106 (range 0.9–2.7) from stem cell apheresis with a median of 2 collections (range 1–4). These 4 patients proceeded to autologous stem cell transplant, with median days to neutrophil and platelet engraftments of 11 (range 10–12) and 14 (range 12–19), respectively. In conclusion, 1) PTH is well tolerated in this population, even at a dose of 100 mcg; 2) PTH plus G-CSF may be effective in patients that fail primary or secondary stem cell mobilization attempts; 3) PTH plus G-CSF should be tested in a larger Phase II study to improve donor stem cell yield. Future directions may also include the use of parathyroid hormone to improve engraftment efficiency in settings of low stem cell dose such as adult cord blood transplantation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1348-1348
Author(s):  
Stephanie Wagner ◽  
Daniel Cramer ◽  
Richard Hansen ◽  
Ryan Reca ◽  
Mariusz Ratajczak ◽  
...  

Abstract Background: Peripheral blood stem cell infusion is the preferred method for establishing hematopoiesis in transplantation. Use of G-CSF is now the most commonly used mobilizing agent. Despite advances in stem cell techniques and agents, studies have shown that up to 20–25% of patients exhibit poor mobilization and are not able to proceed with autotransplantation. Strategies to improve mobilization include using chemotherapy alone or in conjunction with growth factor or novel agents such as AMD3100. β-glucan PGG is a soluble yeast beta glucan with a molecular mass of 150kD comprised of a β-D-(1–3)-linked glucopyranosyl backbone with a β-D-(1–6)-linked β(1–3) side chains. In previous studies, β-glucan PGG has been shown to induce hematopoietic stem and progenitor cell (HSPC) mobilization to the periphery. In this study, we examined β-glucan PGG’s ability to mobilize HSPC alone and in conjuction with G-CSF and explored its mechanism of action. Methods: Prior to our study, dose kinetic studies were done and showed peak stem cell mobilization at 24 hours and maximum results using the 9.2 mg/kg dose with β-glucan PGG alone. In this study, four groups of wildtype (WT) C57BL/6 mice (6 mice/group) were used; control (saline injection × 4 days), G-CSF only (125ug/d × 4 days), PGG only (4.8 or 9.2mg/kg × one dose), and G-CSF/PGG combination. In the combination group, G-CSF injections were given daily for four days and one PGG injection on day three. Four hours after the last G-CSF injection, the mice were sacrificed and final white blood cell count were collected. Blood was assayed for in vitro mobilization in methycellulose culture. Peritoneal macrophage were stimulated with PGG and supernatant was harvested at times indicated and concentration of MMP-9 was determined using ELISA (R&D Systems). Results: All treated groups showed increased mobilization of all major cell lines (CFU-GM, CFU-M, and CFU-G). β-glucan PGG alone was able to mobilize peripheral stem cells at both doses (4.8mg/kg–9.3 CFU/200000 PBL and 9.2mg/kg–14 CFU/200000 PBL). The combination group (G-CSF/PGG-4.8mg/kg) showed an almost two-fold increase in CFU compared to G-CSF alone (G-CSF-30.42 CFU/200000 PBL, G-CSF/PGG(4.8)-57 CFU/200000 PBL, p=0.008). Initial in vitro chemotaxis assays revealed β-glucan PGG induces HPSC mobilization independent of SDF-1 (stromal derived factor) gradient. Our previous studies have demonstrated that β-glucan can enhance bone marrow engraftment via a CR3 dependent mechanism. However, our current study indicated that β-glucan mobilized stem cells via a CR3 independent mechanism and did not induce appreciable levels of cytokine secretion. To further explore its mechanism of action, we stimulated peritoneal macrophages with β-glucan PGG. Strikingly, β-glucan PGG stimulated macrophages to produce significant amounts of matrix metalloproteinase-9 (MMP-9). Similarly, β-glucan PGG also stimulated bone marrow-derived macrophages to secrete MMP-9. Conclusion: β-glucan PGG is an agent that enhances stem cell mobilization alone and has a synergistic effect when used in conjunction with G-CSF. The mechanism of mobilization by β-glucan PGG involves MMP-9, which results from release of pro-MMP-9 from marrow macrophages. The efficacy of β-glucan PGG and lack of proinflammatory activity make it an attractive agent to supplement mobilization with G-CSF.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3252-3252
Author(s):  
Thomas Pabst ◽  
Sebastian Moser ◽  
Ulrike Bacher ◽  
Barbara Jeker ◽  
Behrouz Mansouri Taleghani ◽  
...  

Introduction: Autologous stem cell transplantation (ASCT) following high-dose chemotherapy (HDCT) is a cornerstone in the standard first-line treatment in myeloma (MM) patients. Freezing of the hematopoietic stem cells (HSC) to bypass the time between stem cell collection and completion of HDCT is crucial for this process. Due to the vulnerability of HSC, adding of anti-freezing agents such 5-10 vol% dimethyl-sulfoxide (DMSO) to hematopoietic stem cells is mandatory. DMSO exerts toxic effects after administration, and toxicity of DMSO is dose-related. However, guidelines for this procedure are missing, and transplant centers have implemented varying limitations of maximum total DMSO administration, ranging from 20-70 g per day. At our center, the maximum transplant volume is 300 mL per day with DMSO at 5 vol%. For patients with transfusion volumes above these limits, the transplant procedure is split over several days. Methods: In this single center study, we retrospectively analyzed the impact of multiple day transplantation procedures on survival rates and hematological recovery in 271 patients with MM patients undergoing first melphalan-based ASCT. Results: 244 (90%) received ASCT within a single day, and this group was termed Tx1. The Tx2-3 group comprised 23 patients receiving stem cells on 2 days, and four patients on 3 days. Both groups (Tx1 and Tx2-3) did not differ in clinical characteristics or number/types of induction therapy lines. The remission status pre-transplant was comparable. Plerixafor was given more frequently in Tx2-3 than Tx1 (p=0.0715). At the day of SC collection, peripheral CD34+ counts were lower in Tx2-3. The final administered autograft volume was higher in Tx2-3 patients. The amount of transplanted CD34+ cells/kg b.w. was lower in the Tx2-3 group, mirroring poorer mobilization of CD34+ cells (p<0.0001). The median recovery for neutrophils was 13 days for Tx2-3 and 12 days for Tx1 (p=0.0048), and for platelets 18 versus 14 days (p=0.0004). Tx2-3 patients had longer median hospitalization duration (23 versus 19 days; p=0.0006). The median follow-up was 56 months. Relapse-free survival (RFS) was 39 months, and 169 relapses (62%) occurred so far. Median OS was 91 months, and 82 patients (30%) have died during follow-up. Tx2-3 patients had shorter median RFS (21 versus 40 months for Tx1; p=0.0245), and shorter median OS with 55 versus 93 months (p=0.0134) (Figure 1). Conclusions: Our data suggest that multiple day transplantation is associated with poor CD34+ mobilization and is observed in roughly 10% of myeloma patients. Patients with multiple day transplant procedures had later neutrophil and platelet engraftment, longer hospitalization duration, more febrile episodes, and inferior OS and RFS. This suggests to consider myeloma patients with the need for multiple day transplantation as a patient group at increased risk that needs enhanced surveillance strategies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document