Mutational Analysis of TP53 Gene in Chronic Lymphocytic Leukemia: Comparison of Different Methodological Approaches

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3911-3911
Author(s):  
Barbara Kantorova ◽  
Jitka Malcikova ◽  
Jana Kminkova ◽  
Veronika Navrkalova ◽  
Barbora Dvorakova ◽  
...  

Abstract Abstract 3911 Background The adverse prognostic significance of p53 aberrations (gene deletion at locus 17p13.1 and/or TP53 mutations) has been already proven in chronic lymphocytic leukemia (CLL). In contrast to the standardized examination of the gene deletion by interphase FISH, various methodologies with different detection efficiency are applied for mutation analysis. To reduce inter-laboratory variability, the European Research Initiative on CLL (ERIC) has recently released recommendations for p53 mutational testing (Pospisilova et al., 2012). However, the optimal detection methodology has not been established yet. Aim To compare molecular-biological methods for exact determination of TP53 mutational status in CLL patients. Methodology The analyzed cohort included 100 high-risk CLL patients with unfavorable disease prognosis represented by unmutated IgVH gene status, 17p and 11q deletions and/or chemotherapy resistence. Mutational screening of TP53 gene was performed in all patients by the combination of the following methods: (1) direct Sanger sequencing (DNA and/or cDNA), (2) denaturing high-performance liquid chromatography (DHPLC; Varian), (3) functional analysis (FASAY), (4) CLL custom resequencing microarray (Affymetrix), (5) Roche AmpliChip p53 Test (Roche Molecular Systems). In the selected samples, the presence of mutations was confirmed by ultra-deep next generation sequencing (NGS; GS Junior System, Roche). Results The parallel p53 analysis using all five above mentioned detection techniques revealed totally 66 mutations in 47/100 patients. The predominant proportion of the identified alterations was represented by prognostically adverse missense substitutions (67%), mainly localized in p53 DNA-binding domain (5–8 exons). Other clinically relevant sequencing variants included frameshift mutations (15%), splice-site mutations (8%), nonsense mutations (6%) and in-frame deletions (4%). Although the used detection methods reached comparable sensitivity (with the exception of direct sequencing), some inconsistent results were observed. In comparison with DNA-based methodologies, the FASAY failed in recognition of nonsense mutations leading to RNA degradation (nonsense-mediated decay phenomenon). On the other hand, the technical aspects of chip arrays have not facilitated the proper determination of deletions and insertions. From this perspective, DHPLC in connection with direct sequencing enabled the most specific recognition of the present gene alterations. Using this methodic combination, 57/66 mutations covering all mutation types were clearly identified. Nevertheless, for the correct evaluation of the biological importance and the clinical consequences of the detected mutations, the DNA screening should be supplemented with functional analysis. Conclusion The heterogeneous biological properties of TP53 mutations require sensitive and specific detection methodology. Although many different methods are currently used for mutation analysis, each of them has some advantages and shortcommings. The combination of DNA testing with functional analysis offers the most efficient tool for improved prediction of the disease course and the response of patients to therapy. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3283-3283
Author(s):  
Barbara Kantorova ◽  
Jitka Malcikova ◽  
Veronika Navrkalova ◽  
Jana Smardova ◽  
Kamila Brazdilova ◽  
...  

Abstract Introduction A presence of activating mutations in NOTCH1 gene has been recently associated with reduced survival and chemo-immunotherapy resistance in chronic lymphocytic leukemia (CLL). However, a prognostic significance of the NOTCH1 mutations with respect to TP53mutation status has not been fully explained yet. Methods An examined cohort included 409 patients with CLL enriched for high risk cases; in 121 patients consecutive samples were investigated. To determine the TP53 mutation status, a functional analysis of separated alleles in yeast (FASAY, exons 4-10) combined with direct sequencing was performed; the ambiguous cases were retested using an ultra-deep next generation sequencing (MiSeq platform; Illumina). The presence of NOTCH1 hotspot mutation (c.7544_7545delCT) was analyzed using direct sequencing complemented by allele-specific PCR in the selected samples. In several patients harboring concurrent NOTCH1 and TP53 mutations, single separated cancer cells were examined using multiplex PCR followed by direct sequencing. A correlation between mutation presence and patient overall survival, time to first treatment and other molecular and cytogenetic prognostic markers was assessed using Log-rank (Mantel-cox) test and Fisher's exact test, respectively. Results The NOTCH1 and TP53 mutations were detected in 16% (65/409) and 27% (110/409) of the examined patients, respectively; a coexistence of these mutations in the same blood samples was observed in 11% (19/175) of the mutated patients. The detected increased mutation frequency attributes to more unfavorable profile of the analyzed cohort; in the TP53-mutated patients missense substitutions predominated (75% of TP53 mutations). As expected, a significantly reduced overall survival in comparison to the wild-type cases (147 months) was observed in the NOTCH1-mutated (115 months; P = 0.0018), TP53-mutated (79 months; P < 0.0001) and NOTCH1-TP53-mutated patients (101 months; P = 0.0282). Since both NOTCH1 and TP53 mutations were strongly associated with an unmutated IGHV gene status (P < 0.0001 and P = 0.0007), we reanalyzed the IGHV-unmutated patients only and interestingly, the impact of simultaneous NOTCH1 and TP53 mutation presence on patient survival was missed in this case (P = 0.1478). On the other hand, in the NOTCH1 and/or TP53-mutated patients significantly reduced time to first treatment was identified as compared to the wild-type cases (41 months vs. 25 months in NOTCH1-mutated, P = 0.0075; 17 months in TP53-mutated, P < 0.0001; and 18 months in NOTCH1-TP53-mutated patients, P = 0.0003). The similar results were observed also in the subgroup of the IGHV-unmutated patients, with the exception of patients carrying sole NOTCH1 mutation (P = 0.2969). Moreover, in the NOTCH1-TP53-mutated patients an increased frequency of del(17p)(13.1) was found in comparison to the TP53-mutated patients only (72% vs. 56%); this cytogenetic defect was not detected in the patients with sole NOTCH1 mutation. Our results might indicate, that NOTCH1 mutation could preferentially co-selected with particular, less prognostic negative type of TP53 defects. Notably, in our cohort the NOTCH1 mutation predominated in the patients harboring truncating TP53 mutations localized in a C-terminal part of the TP53 gene behind the DNA-binding domain (P = 0.0128). Moreover, in one of the NOTCH1-TP53-mutated patients the analysis of separated cancer cells revealed a simultaneous presence of NOTCH1 mutation and TP53 in-frame deletion in the same CLL cell. In contrast, in the other examined NOTCH1-TP53-mutated patient the concurrent NOTCH1 mutation and TP53 missense substitution (with presumed negative impact on patient prognosis) were found in different CLL cells. Conclusions The parallel presence of NOTCH1 hotspot mutation might be detected in a significant proportion of TP53-mutated patients and it seems to be associated with less prognostic unfavorable TP53 mutations. Nevertheless, these preliminary data should be further confirmed in a large cohort of patients. This study was supported by projects VaVPI MSMT CR CZ.1.05/1.1.00/02.0068 of CEITEC, IGA MZ CR NT13493-4/2012, NT13519-4/2012 and CZ.1.07/2.3.00/30.0009. Disclosures Brychtova: Roche: Travel grants Other. Doubek:Roche: Travel grants Other.


2011 ◽  
Vol 29 (16) ◽  
pp. 2223-2229 ◽  
Author(s):  
David Gonzalez ◽  
Pilar Martinez ◽  
Rachel Wade ◽  
Sarah Hockley ◽  
David Oscier ◽  
...  

Purpose TP53 mutations have been described in chronic lymphocytic leukemia (CLL) and have been associated with poor prognosis in retrospective studies. We aimed to address the frequency and prognostic value of TP53 abnormalities in patients with CLL in the context of a prospective randomized trial. Patients and Methods We analyzed 529 CLL samples from the LRF CLL4 (Leukaemia Research Foundation Chronic Lymphocytic Leukemia 4) trial (chlorambucil v fludarabine with or without cyclophosphamide) at the time of random assignment for mutations in the TP53 gene. TP53 mutation status was correlated with response and survival data. Results Mutations of TP53 were found in 40 patients (7.6%), including 25 (76%) of 33 with 17p deletion and 13 (3%) of 487 without that deletion. There was no significant correlation between TP53 mutations and age, stage, IGHV gene mutations, CD38 and ZAP-70 expression, or any other chromosomal abnormality other than 17p deletion, in which concordance was high (96%). TP53 mutations were significantly associated with poorer overall response rates (27% v 83%; P < .001) and shorter progression-free survival (PFS) and overall survival (OS; 5-year PFS: 5% v 17%; 5-year OS: 20% v 59%; P < .001 for both). Multivariate analysis that included baseline clinical variables, treatment, and known adverse genetic factors confirmed that TP53 mutations have added prognostic value. Conclusion TP53 mutations are associated with impaired response and shorter survival in patients with CLL. Analysis of TP53 mutations should be performed in patients with CLL who have progressive disease before starting first-line treatment, and those with mutations should be selected for novel experimental therapies.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2087-2087
Author(s):  
Hannes Herholz ◽  
Claudia Schoch ◽  
Susanne Schnittger ◽  
Wolfgang Kern ◽  
Torsten Haferlach ◽  
...  

Abstract In chronic lymphocytic leukemia (CLL) cytogenetic aberrations such as del(17p) and del(11q) predict inferior outcome. In addition, complex aberrant karyotypes as well as chromosomal translocations as defined by metaphase cytogenetics were suggested as poor prognostic markers for overall survival. We screened 194 consecutive CLL patients for del(17p)/TP53-deletion by fluorescence in situ hybridization (FISH) and for TP53-mutations by denaturing high performance liquid chromatography (DHPLC) and subsequent direct sequencing of aberrant fragments. In addition 160 of these CLL patients were analyzed by classical metaphase cytogenetics to determine the incidence of TP53-aberration in different cytogenetic subgroups. Interphase FISH on 194 samples detected TP53-deletions in 9.3% (n=18) of cases. In parallel, exons 3–9 of the TP53 gene were screened by DHPLC and an aberrant pattern was detected in 9.8% (n=19) of cases. TP53-mutations were confirmed and further characterized by direct sequencing in 16 of the 19 cases. The residual 3 samples had an aberrant pattern in DHPLC for the amplicon of exons 8–9 which pointed to a small population of TP53-aberrant cells which was beyond the detection limit of sequencing. 16 of 18 (89%) cases with TP53-deletion were accompanied by a TP53-mutation affecting the residual allele. 3 samples with TP53-mutations had no deletion of one TP53 allele. Therefore, the overall incidence of TP53-aberrations was 10.8 % (21/194) with a significant association of TP53-deletion and TP53-mutation (p<0.0001). Metaphase cytogenetics was performed on 160 CLL samples. A complex aberrant karyotype defined by ≥ 3 aberrations was identified in 14% of samples (22/160). The incidence of TP53-aberrations in this cytogenetic subgroup was 50% (11/22) and therefore significantly higher than in other cytogenetic subgroups (p<0.0001). Among 160 samples with cytogenetic analysis 49 (31%) exhibited translocations. We divided these translocations into subgroups with karyotypes carrying balanced translocations only (n=18), carrying unbalanced translocations only (n=20) as well as karyotypes with both balanced and unbalanced translocations (n=11). Within the entire group of translocations the incidence of TP53-aberration was 27% (13/49). The incidence of TP53-aberrations was 5.5% (1/18) in the group with only balanced translocations, 40% (8/20) in the group with only unbalanced translocations and 36% (4/11) where balanced and unbalanced translocation occurred in combination. When the latter two groups with unbalanced translocations were combined TP53-aberration occurred in 39% (12/31) of cases. Altogether the association of TP53-aberration with translocations was strong (p<0.0001) especially with unbalanced translocations (p<0.0001) whereas no coherency with balanced translocations could be demonstrated (p>0.05). Furthermore, translocations were detected in 91% (20/22) and unbalanced translocations in 82% (18/22) of complex karyotypes. The association of translocations, in particular unbalanced translocation with complex aberrant karyotype was significant (for both p<0.0001). In conclusion: Loss of TP53 and TP53 mutations occur with a frequency of 9.3% and 9.8%, respectively and are significantly associated. A highly significant association of TP53-aberrations with complex aberrant karyotypes and unbalanced translocations was observed. We hypothesize that TP53-aberrations might contribute to genetic instability leading to accumulation of cytogenetic aberrations especially unbalanced translocations.


2010 ◽  
Vol 28 (11) ◽  
pp. 1863-1869 ◽  
Author(s):  
Tadeusz Robak ◽  
Krzysztof Jamroziak ◽  
Joanna Gora-Tybor ◽  
Beata Stella-Holowiecka ◽  
Lech Konopka ◽  
...  

Purpose Little is known about comparison of the activity of different purine nucleoside analogs in chronic lymphocytic leukemia (CLL). We conducted a randomized phase III trial to compare efficacy and safety of cladribine and fludarabine, each combined with cyclophosphamide, in previously untreated progressive CLL. Patients and Methods Patients received cladribine at 0.12 mg/kg combined with cyclophosphamide at 250 mg/m2 for 3 days intravenously (CC regimen) or fludarabine at 25 mg/m2 combined with cyclophosphamide at 250 mg/m2 for 3 days intravenously (FC regimen), every 28 days for up to six cycles. The primary end point was complete response (CR) rate. Secondary end points included overall response rate (ORR), progression-free survival (PFS), overall survival (OS), and treatment-related toxicity. Results Of 423 randomly assigned patients (211 to CC and 212 to FC), 395 were evaluated in the final analysis. The CR and ORR reached 47% and 88% in the CC arm and 46% and 82% in the FC arm (P = .25 and P = .11, respectively). The median PFS was 2.34 years with CC and 2.27 years with FC (P = .51). OS and grade 3/4 treatment-related toxicity were also comparable. Moreover, we did not observe any significant differences in CC and FC efficacy across different patient prognostic subgroups that included patients with 17p13 (TP53 gene) deletion who had poor survival in both study arms. Conclusion Cladribine and fludarabine in combination with cyclophosphamide are equally effective and safe first-line regimens for progressive CLL. Both combinations have unsatisfactory activity in patients with 17p13 (TP53 gene) deletion.


2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Crescenzio Francesco Minervini ◽  
Cosimo Cumbo ◽  
Paola Orsini ◽  
Claudia Brunetti ◽  
Luisa Anelli ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3322-3329 ◽  
Author(s):  
Thorsten Zenz ◽  
Alexander Kröber ◽  
Katrin Scherer ◽  
Sonja Häbe ◽  
Andreas Bühler ◽  
...  

AbstractThe exact prognostic role of TP53 mutations (without 17p deletion) and any impact of the deletion without TP53 mutation in CLL are unclear. We studied 126 well-characterized CLL patients by direct sequencing and DHPLC to detect TP53 mutations (exons 2-11). Most patients with 17p deletions also had TP53 mutations (81%). Mutations in the absence of 17p deletions were found in 4.5%. We found a shorter survival for patients with TP53 mutation (n = 18; P = .002), which was more pronounced when analyzed from the time point of mutation detection (6.8 vs 69 months, P < .001). The survival was equally poor for patients with deletion 17p plus TP53 mutation (7.6 months, n = 13), TP53 mutation only (5.5 months, n = 5), and 17p deletion only (5.4 months, n = 3). The prognostic impact of TP53 mutation (HR 3.71) was shown to be independent of stage, VH status, and 11q and 17p deletion in multivariate analysis. Serial samples showed evidence of clonal evolution and increasing clone size during chemotherapy, suggesting that there may be patients where this treatment is potentially harmful. TP53 mutations are associated with poor sur-vival once they occur in CLL. The de-monstration of clonal evolution under selective pressure supports the biologic significance of TP53 mutations in CLL.


2017 ◽  
Vol 409 ◽  
pp. 42-48 ◽  
Author(s):  
Rosa Collado ◽  
Anna Puiggros ◽  
José Antonio López-Guerrero ◽  
Ma José Calasanz ◽  
Ma José Larráyoz ◽  
...  

2019 ◽  
Vol 20 (5) ◽  
pp. 1579-1585
Author(s):  
Ameen Abdulaziz Mohammed Basabaeen ◽  
Enaam Abdalrhman Abdelgader ◽  
Ebtihal Ahmed Babekir ◽  
Saadia Osman Abdelrahim ◽  
Nada Hassan Eltayeb ◽  
...  

2019 ◽  
Vol Volume 10 ◽  
pp. 399-404
Author(s):  
Waleed Haji Saeed ◽  
Adil Abozaid Eissa ◽  
Adnan Anwar Al-Doski

Sign in / Sign up

Export Citation Format

Share Document