The First Demonstration of Sequential Acquisition of Class I and Class II Gene Mutations in Formation of Human Acute Myeloid Leukemia Stem Cells

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 859-859
Author(s):  
Takahiro Shima ◽  
Yoshikane Kikushige ◽  
Toshihiro Miyamoto ◽  
Koichi Akashi

Abstract Abstract 859 Hematopoietic stem cells (HSCs) should be the main target for accumulation of mutational events, which eventually leads to formation of leukemic stem cells. These leukemogenic mutations have been classified at least into class I (providing the proliferative and survival advantage) and class II (impairing the differentiation activity) gene abnormalities. It has been proposed that acquisition of both class I and class II mutation are essential for the development of leukemia. Although several experimental animal studies suggest this model, there is no direct evidence that class I and class II mutations collaborate to contribute to development of human leukemias. Here we demonstrate that the acquisition of 8;21 translocation, which encodes the AML1-ETO (a class II chimeric fusion gene), and of mutational c-Kit (a class I mutation) is sequentially occurred in human acute myelogenous leukemia (AML). It has been shown that in t(8;21) AML patients treated with chemotherapy, a small amount of AML1-ETO mRNA was never disappeared even in patients maintaining remission for more than 10 years. We have demonstrated that this AML1-ETO mRNA in “cured” patients is derived from t(8;21)+ HSCs that consisted only a few percent of HSCs in remission (Miyamoto et al., PNAS 2000; 97: 7521–7526). The t(8;21)+ HSCs possessed normal differentiation at least into myeloerythroid cells and B cells. These data strongly suggest that acquisition of the AML1-ETO fusion is not sufficient for development of t(8;21) AML, and that t(8;21)+ HSCs are preleukemic HSCs. We hypothesized that acquisition of additional class I mutation might transform the AML1-ETO+ preleukemic HSCs into AML stem cells. We therefore searched for class I mutations in t(8;21) AML samples, and found that in 13 out of 33 t(8;21) AML patients, AML cells have c-Kit mutations (but not other class I such as FLT3-ITD and N-Ras mutations) at diagnosis. We then tested whether the AML1-ETO+ preleukemic HSCs in remission marrow have the c-Kit mutation. Six out of these 13 t(8;21) AML patients with c-Kit mutation maintaining long-term remission were enrolled in this study. To confirm the coexistence of AML1-ETO and c-Kit mutation in single leukemic stem cells, CD34+CD38− AML cells were purified from the bone marrow of patients at diagnosis, and tested for the presence of AML1-ETO and c-Kit mutation by single cell PCR. In all of 910 single CD34+CD38− AML cells, both AML1-ETO and c-Kit mutations were detected. Then, CD34+CD38− HSCs in remission were tested for the presence of AML1-ETO and c-Kit mutation. In 1728 single CD34+CD38− HSCs of remission marrow, 0.9% (16 cells) of these cells expressed AML1-ETO. Surprisingly, none of these AML1-ETO+ preleukemic HSCs possessed c-Kit mutation, indicating that AML1-ETO+ clones in long-term remission are independent from the original t(8;21) AML clones in terms of the presence of c-Kit mutation. We then performed colony-forming assays to evaluate the differentiation potential of these AML1-ETO+ preleukemic HSCs. HSCs of remission marrow-derived colonies were picked up, and tested for the presence of AML1-ETO and c-Kit mutation. In 7187 colonies formed in the culture of remission marrow, 1.2% (89 colonies) of these colonies were positive for AML1-ETO, and all of these colonies were negative for c-Kit mutation. These data collectively suggest that the acquisition of c-Kit mutation is the second step for formation of t(8;21) AML stem cells: Normal HSCs acquire t(8;21) and express resultant AML1-ETO (Class II) but it is not sufficient for full transformation into AML stem cells. These preleukemic HSCs possess normal differentiation activity, but additional c-Kit mutation (Class I) might be critical in transforming into AML stem cells. This is the first clear-cut evidence that HSCs transform into AML stem cells by stepwise acquisition of Class I and Class II mutations. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3584-3584
Author(s):  
Takahiro Shima ◽  
Yoshikane Kikushige ◽  
Toshihiro Miyamoto ◽  
Koichi Akashi

Abstract Abstract 3584 The 8;21 translocation, one of the most general chromosomal abnormalities in acute myelogenous leukemia (AML), encodes the AML1-ETO chimeric fusion gene. Because AML1-ETO can inhibit the CBF complex to transactivate myeloid-lineage genes in a dominant negative fashion, the high level expression of this gene plays a critical role in inhibiting differentiation of target cells, which leads to progression of AML. We, however, have reported that patients maintaining a long-term remission retain AML1-ETO expression at a very low level that can be detected by nested RT-PCR. The AML1-ETO transcripts in these patients were derived from a small fraction of t(8;21)+ hematopoietic stem cells (HSCs) capable of multilineage differentiation (PNAS 2000). In fact, previous data shown that AML1/ETO knock-in or AML1/ETO transgenic mice did not develop AML. These data suggest that acquisition of the AML1-ETO fusion is not sufficient to develop t(8;21) AML. Since t(8;21) AML cells frequently possess constitutive active mutation of c-Kit, we hypothesized that the c-Kit mutation may work as a second oncogenic hit in t(8;21)+ HSCs to transform into AML. To test the hypothesis, we extensively analyzed the existence of c-Kit mutation within AML1-ETO+ HSCs from patients maintaining remission for a long-term. CD34+CD38− HSCs were purified from the bone marrow of patients in long-term remission, and were cultured in vitro to form colonies. These HSC-derived colonies were picked up, and tested for the presence ofAML1-ETO and c-Kit mutation. Five t(8;21) AML patients with c-Kit mutation were enrolled in this study. All of 1020 blastic colonies at diagnosis were positive for both AML1-ETO and c-Kit mutation. In 7187 colonies formed in the culture of remission marrow, almost 1% (89 colonies) of these colonies expressed AML1-ETO. Surprisingly, none of these colonies possessed c-Kit mutation, indicating that AML1-ETO+ clones in remission are not identical to these in t(8;21) AML. Accordingly, it is highly likely that HSCs first acquire AML1-ETO, and a fraction of these cells additionally mutated c-Kit, resulting in transformation into AML stem cells. This is the first clear-cut evidence that human HSCs transform into AML via multi-step oncogenesis in vivo. Disclosures: No relevant conflicts of interest to declare.


Haematologica ◽  
2020 ◽  
Vol 106 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Sandrine Jeanpierre ◽  
Kawtar Arizkane ◽  
Supat Thongjuea ◽  
Elodie Grockowiak ◽  
Kevin Geistlich ◽  
...  

Chronic myelogenous leukemia arises from the transformation of hematopoietic stem cells by the BCR-ABL oncogene. Though transformed cells are predominantly BCR-ABL-dependent and sensitive to tyrosine kinase inhibitor treatment, some BMPR1B+ leukemic stem cells are treatment-insensitive and rely, among others, on the bone morphogenetic protein (BMP) pathway for their survival via a BMP4 autocrine loop. Here, we further studied the involvement of BMP signaling in favoring residual leukemic stem cell persistence in the bone marrow of patients having achieved remission under treatment. We demonstrate by single-cell RNA-Seq analysis that a sub-fraction of surviving BMPR1B+ leukemic stem cells are co-enriched in BMP signaling, quiescence and stem cell signatures, without modulation of the canonical BMP target genes, but enrichment in actors of the Jak2/Stat3 signaling pathway. Indeed, based on a new model of persisting CD34+CD38- leukemic stem cells, we show that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways. Interestingly, we reveal that only the BMPR1B+ cells adhering to stromal cells display a quiescent status. Surprisingly, this quiescence is induced by treatment, while non-adherent BMPR1B+ cells treated with tyrosine kinase inhibitors continued to proliferate. The subsequent targeting of BMPR1B and Jak2 pathways decreased quiescent leukemic stem cells by promoting their cell cycle re-entry and differentiation. Moreover, while Jak2-inhibitors alone increased BMP4 production by mesenchymal cells, the addition of the newly described BMPR1B inhibitor (E6201) impaired BMP4-mediated production by stromal cells. Altogether, our data demonstrate that targeting both BMPR1B and Jak2/Stat3 efficiently impacts persisting and dormant leukemic stem cells hidden in their bone marrow microenvironment.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 15-23 ◽  
Author(s):  
James C. Mulloy ◽  
Jörg Cammenga ◽  
Karen L. MacKenzie ◽  
Francisco J. Berguido ◽  
Malcolm A. S. Moore ◽  
...  

The acute myelogenous leukemia–1 (AML1)–ETO fusion protein is generated by the t(8;21), which is found in 40% of AMLs of the French-American-British M2 subtype. AML1-ETO interferes with the function of the AML1 (RUNX1, CBFA2) transcription factor in a dominant-negative fashion and represses transcription by binding its consensus DNA–binding site and via protein-protein interactions with other transcription factors. AML1 activity is critical for the development of definitive hematopoiesis, and haploinsufficiency of AML1 has been linked to a propensity to develop AML. Murine experiments suggest that AML1-ETO expression may not be sufficient for leukemogenesis; however, like the BCR-ABL isoforms, the cellular background in which these fusion proteins are expressed may be critical to the phenotype observed. Retroviral gene transfer was used to examine the effect of AML1-ETO on the in vitro behavior of human hematopoietic stem and progenitor cells. Following transduction of CD34+ cells, stem and progenitor cells were quantified in clonogenic assays, cytokine-driven expansion cultures, and long-term stromal cocultures. Expression of AML1-ETO inhibited colony formation by committed progenitors, but enhanced the growth of stem cells (cobblestone area-forming cells), resulting in a profound survival advantage of transduced over nontransduced cells. AML1-ETO–expressing cells retained progenitor activity and continued to express CD34 throughout the 5-week long-term culture. Thus, AML1-ETO enhances the self-renewal of pluripotent stem cells, the physiological target of many acute myeloid leukemias.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 560-560
Author(s):  
Emmanuelle Passegue ◽  
Erwin F. Wagner ◽  
Irving L. Weissman

Abstract JunB is expressed in hematopoietic stem cells (HSC) as a partner for Fos in the composition of the AP-1 transcription factor. Previously, we have shown that junB inactivation in postnatal mice results in the development of a myeloproliferative disorder (MPD) resembling early human chronic myelogenous leukemia (CML) (Passegue et al., 2001, Cell, 104, 21-32). Here, we demonstrate that JunB is a critical transcriptional regulator of HSC numbers both in normal and leukemic mice. Overexpression of junB in long-term HSC (LT-HSC) dramatically decreases the frequency of LT-HSC, while inactivation of junB specifically expands the numbers of LT-HSC, and of granulocyte/macrophage progenitors (GMP), resulting in the development of a chronic MPD with many features of human CML, including progression to blast crisis, and death. JunB effects are mediated, at least in part, via the regulation of effectors genes such as the cell cycle inhibitor p16/INK4a, which is a direct junB-target gene and a key regulator of stem cell proliferation/senescence, as well as the anti-apoptotic proteins bcl2 and bcl-xl, two critical regulators of stem cell death. Using several models of conditional deletion of junB in hematopoietic cells, we demonstrate that junB inactivation must take place in LT-HSC, and not at later stages of myelopoiesis, to induce MPD. Most importantly, we show that only junB-deficient LT-HSC, and no other myeloid progenitor populations, are capable of transplanting the MPD to recipient mice. These results indicate a stem cell-specific role for JunB in normal and leukemic hematopoiesis, and provide an experimental demonstration that leukemia stem cells (LSC) can reside at the LT-HSC stage of development in a mouse model of chronic MPD.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3704-3704
Author(s):  
Aldona A Karaczyn ◽  
Edward Jachimowicz ◽  
Jaspreet S Kohli ◽  
Pradeep Sathyanarayana

The preservation of hematopoietic stem cell pool in bone marrow (BM) is crucial for sustained hematopoiesis in adults. Studies assessing adult hematopoietic stem cells functionality had been shown that for example loss of quiescence impairs hematopoietic stem cells maintenance. Although, miR-199b is frequently down-regulated in acute myeloid leukemia, its role in hematopoietic stem cells quiescence, self-renewal and differentiation is poorly understood. Our laboratory investigated the role of miR-199b in hematopoietic stem and progenitor cells (HSPCs) fate using miR-199b-5p global deletion mouse model. Characterization of miR-199b expression pattern among normal HSPC populations revealed that miR-199b is enriched in LT-HSCs and reduced upon myeloablative stress, suggesting its role in HSCs maintenance. Indeed, our results reveal that loss of miR-199b-5p results in imbalance between long-term hematopoietic stem cells (LT-HSCs), short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MMPs) pool. We found that during homeostasis, miR-199b-null HSCs have reduced capacity to maintain quiescent state and exhibit cell-cycle deregulation. Cell cycle analyses showed that attenuation of miR-199b controls HSCs pool, causing defects in G1-S transition of cell cycle, without significant changes in apoptosis. This might be due to increased differentiation of LT-HSCs into MPPs. Indeed, cell differentiation assay in vitro showed that FACS-sorted LT-HSCs (LineagenegSca1posc-Kitpos CD48neg CD150pos) lacking miR-199b have increased differentiation potential into MPP in the presence of early cytokines. In addition, differentiation assays in vitro in FACS-sorted LSK population of 52 weeks old miR-199b KO mice revealed that loss of miR-199b promotes accumulation of GMP-like progenitors but decreases lymphoid differentiation, suggesting that miR199b may regulate age-related pathway. We used non-competitive repopulation studies to show that overall BM donor cellularity was markedly elevated in the absence of miR-199b among HSPCs, committed progenitors and mature myeloid but not lymphoid cell compartments. This may suggest that miR-199b-null LT-HSC render enhanced self-renewal capacity upon regeneration demand yet promoting myeloid reconstitution. Moreover, when we challenged the self-renewal potential of miR-199b-null LT-HSC by a secondary BM transplantation of unfractionated BM cells from primary recipients into secondary hosts, changes in PB reconstitution were dramatic. Gating for HSPCs populations in the BM of secondary recipients in 24 weeks after BMT revealed that levels of LT-HSC were similar between recipients reconstituted with wild-type and miR-199b-KO chimeras, whereas miR-199b-null HSCs contributed relatively more into MPPs. Our data identify that attenuation of miR-199b leads to loss of quiescence and premature differentiation of HSCs. These findings indicate that loss of miR-199b promotes signals that govern differentiation of LT-HSC to MPP leading to accumulation of highly proliferative progenitors during long-term reconstitution. Hematopoietic regeneration via repopulation studies also revealed that miR-199b-deficient HSPCs have a lineage skewing potential toward myeloid lineage or clonal myeloid bias, a hallmark of aging HSCs, implicating a regulatory role for miR-199b in hematopoietic aging. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3947-3947
Author(s):  
Quy Le ◽  
Brandon Hadland ◽  
Soheil Meshinchi ◽  
Irwin D. Bernstein

Abstract Background: AML is an aggressive hematologic malignancy that remains difficult to treat. A common mutation found in AML is FLT3-ITD, occurring in 15% of childhood AML. Although chemotherapy has successfully induced remission, patients with a high FLT3 ITD:WT allelic ratio (FLT3-AR) exhibit a high relapse rate, requiring hematopoietic stem cell transplantation to increase the chance of long-term remission. In this study, we demonstrate the requirement of ECs for survival of FLT3-ITD progenitors from primary pediatric AML specimens in the presence of AC220, a potent and selective inhibitor of FLT3. We further show that the Notch pathway plays a role in EC-mediated protection amongst patient samples with high FLT3-AR, suggesting the potential therapeutic use of Notch blockade in the treatment of this high-risk subset. Results: To determine whether ECs confer protection to FLT3-ITD progenitors, we quantified the number of CFC present after 2 weeks of liquid culture or EC co-culture with AC220 (added at days 0, 3 and 7) from four AML specimens with high FLT3-AR (≥1). We used PCR to determine the presence of FLT3-ITD in individual CFC. We found that the numbers of FLT3-ITD CFC (p=0.007) and FLT3-WT CFC (p=0.044) were reduced in liquid culture compared to EC co-culture, suggesting that ECs mediate the survival of FLT3-ITD hematopoietic progenitors against the therapeutic treatment of AC220. Previously, we demonstrated that ECs are critical for the growth and expansion of hematopoietic stem cells, which is dependent on the activation of Notch signaling. We asked whether Notch plays a role in EC-mediated protection of AML progenitors against AC220, using RNA-seq analysis on three FLT3-ITD-harboring AML. Among the significantly altered genes (FDR<0.05), we found an enrichment of Notch target genes that were expressed at significantly higher levels in AC220-treated cells compared to DMSO-treated cells, including HES1, HES4, NRARP, CDKN1A, CCND1, andGATA3, suggesting that Notch signaling may facilitate EC-mediated protection against AC220. Next, we assessed the effect of inhibiting Notch signaling on AML progenitor survival during AC220 treatment in EC co-culture, using inhibitory antibodies specific to the Negative Regulatory Region (NRR) of both Notch1 and Notch2 receptors (anti-NRR1 and anti-NRR2; kindly provided by Chris Siebel, Genentech). We co-cultured bone marrow cells from eight patient specimens with low FLT3-AR (<1) and five patient specimens with high FLT3-AR (≥1), with ECs and briefly treated the co-cultures with Notch inhibitory antibodies or IgG1 antibody for 3 days. AC220 was added to the cultures at days 0, 3 and 7. We assessed CFC numbers present after 2 weeks of culture. Patient samples with low FLT3-AR did not exhibit changes in the numbers of FLT3-ITD CFC (p = 0.735) and FLT3-WT CFC (p = 0.489) in response to Notch inhibition relative to IgG1 control. In contrast, patient samples with high FLT3-AR showed reduction in the number of FLT3-ITD CFC (p=0.019) but the number of FLT3-WT CFC remained unaffected (p=0.874). These results suggest a critical role for Notch in EC-mediated protection in AML with high FLT3-AR. Conclusion: Our studies suggest that inhibiting Notch signaling may have therapeutic potential for overcoming drug resistance induced by the tumor microenvironment in a subset of AML with high FLT3-AR. We have previously shown that a high FLT3-AR is associated with the presence of FLT3-ITD in the least mature hematopoietic subset (CD34+ CD33- precursors), which is thought to contain leukemic stem cells, and this association is correlated with poorer outcome. Additionally, AML cells that give rise to CFC after long-term co-culture with bone marrow stroma or ECs are derived from the CD34+CD33- AML precursors. Ongoing studies aim to determine whether Notch signaling plays a role in the survival of AML CD34+CD33- cells with the goal of eliminating leukemic stem cells responsible for relapse. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1263-1263
Author(s):  
Yoshikane Kikushige ◽  
Goichi Yoshimoto ◽  
Toshihiro Miyamoto ◽  
Fumihiko Ishikawa ◽  
Hiromi Iwasaki ◽  
...  

Abstract FLT3/FLK2, a member of the receptor tyrosine kinase family, plays a critical role in maintenance of hematopoietic homeostasis, and the constitutively active form of the FLT3 mutation is one of the most common genetic abnormalities in acute myelogenous leukemia. In murine hematopoiesis, Flt3 is not expressed in self-renewing long-term hematopoietic stem cells (LT-HSCs), but its expression is restricted to the multipotent and the lymphoid progenitor stages at which cells are incapable of self-renewal. In order to test whether Flt3 expression can delineate such a developmental pathway also in human hematopoiesis, we have analyzed the expression of human Flt3 (hFlt3) in prospectively-purified human stem and progenitors (PNAS 2002) by utilizing 7-color FACS and a highly efficient xenograft systems. We have found that Flt3 expression in early hematopoiesis is completely different between human and mice: hCD34+hCD38-hCD90+Lin-LT-HSCs capable of long-term reconstitution in xenogeneic hosts uniformly express hFlt3, and its expression is upregulated through hCD34+hCD38+hCD45RA-hCD123+Lin-common myeloid progenitors (CMPs) to hCD34+hCD38+hCD45RA+hCD123+Lin-granulocyte/macrophage progenitors (GMPs), but hCD34+hCD38+hCD45RA-hCD123-Lin- megakaryocyte/erythrocyte progenitors (MEPs) shut off its expression in human. Furthermore, we have also demonstrated that hFlt3 signaling can prevent stem and progenitors from apoptotic cell death in vitro without any effects on lineage fate decision. Next, we tried to find key molecules for Flt3-Flt3 ligand (FL)-mediating anti-apoptotic effect. First, we tested expression pattern of anti-apoptotic Bcl-2 family genes in HSCs, CMPs, GMPs, MEPs and common lymphoid progenitors (CLPs) in human hematopoiesis. Mcl-1, an indispensable survival factor for murine hematopoiesis (Science, 2005), was also expressed at the highest level in human HSCs, whereas Bcl-2 and Bcl-xL was highly expressed in GMPs and MEPs, respectively. Next, we examined whether FL stimulation can upregulate the expression of Bcl-2 family genes in human purified HSCs and progenitors. FL significantly upregulated the expression of Mcl-1, but not of Bcl-2 or Bcl-xL in HSCs as well as CMPs and GMPs. In conclusion, our data show that the distribution of Flt3 is quite different in mouse and human hematopoeisis. Human Flt3 targets LT-HSCs and myeloid progenitors except for MEPs. Flt3 signaling might support cell survival in early hematopoiesis including the HSC and the myeloid progenitor stages through upregulation of Mcl-1. This is a striking example that the expression pattern of key molecules could be significantly different between human and mouse.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3253-3253
Author(s):  
Amitava Sengupta ◽  
Jorden Arnett ◽  
Susan Dunn ◽  
Jose Cancelas

Abstract Abstract 3253 Poster Board III-1 Chronic myelogenous leukemia (CML) is a hematopoietic stem cell (HSC) malignancy induced by p210-BCR-ABL and is characterized by myeloproliferation in the bone marrow (BM) and egress of leukemic stem cells and progenitors (LSC/P) to extramedullary sites. Persistence of BCR-ABL+ HSCs in patients under imatinib suggests that inhibition of ABL-kinase alone is not sufficient to completely eliminate the LSC/P population. Rac GTPases represent integrative molecular switches for p210-BCR-ABL-induced HSC transformation and combined pharmacological and genetic attenuation of Rac GTPases significantly prolong survival in vivo, as reported in a retroviral transduction/transplantation model (Thomas EK & Cancelas JA et al, Cancer Cell 2008). Here, we analyzed the role of Rac2 GTPase in the leukemic maintenance and in the interaction of LSC/P with the leukemic microenvironment in vivo. We used a stem cell leukemia (Scl) promoter-driven, tet-off, Scl-tTA x TRE-BCR-ABL (Scl/p210-BCR-ABL) binary transgenic mouse model (Koschmieder S et al., Blood 2005), where expression of BCR-ABL is restricted to the HSC/P compartment, allowing the study of the intrinsic molecular changes in LSC/P during leukemogenesis. In these mice, Scl-driven expression of BCR-ABL is active in HSC (Lin-/Sca1+/c-kit+; LSK) and progenitors (Lin-/c-kit+/Sca-1-; LK), and CML development is associated with the activation of downstream signaling effectors CrkL, p38-MAPK and JNK. Additionally, Scl/p210-BCR-ABL mice had increased cycling of LSK cells and expansion of circulating and splenic, but not BM, LSC/P, suggesting egress of LSC/Ps from the marrow. These mice share all the characteristics of HSC/P transformation in CML, including increased HSC/P proliferation and survival, severely reduced adhesion to fibronectin, increased migration towards CXCL12, increased cell surface expression of CD44 and decreased expression of L-selectin. Myeloproliferative disease (MPD) in these mice is transplantable into recipient mice, and CML splenocytes have a 10-fold increase in homing to the spleen than towards BM (P<0.05). Leukemic splenocytes are also enriched in endosteal lodging progenitors, compared to the BM-derived progenitors (1.9-fold, P≤0.05). In order to determine the contribution of Rac2 GTPase in the transformation phenotype of leukemic stem cells and progenitors, Scl/p210 mice were intercrossed with Rac2-/- mice. Interestingly loss of Rac2 GTPase alone significantly prolongs survival of the leukemic mice (P≤0.001). Prolonged survival, as observed in Scl/p210 x Rac2-/-, is associated with significantly reduced proliferation of leukemic LK (3-fold, P<0.05) and LSK (6-fold P<0.005) cells, both in BM as well as in spleen, in vivo. Scl/p210 x Rac2-/- mice are also characterized by increased apoptosis (1.7-fold) and lower frequency of LSK cells (2-fold) compared to the Scl/p210 mice in vivo. However, deletion of Rac2 does not significantly reverse the adhesion and migration transformation phenotype of LSC/P. In summary, Rac2 deficiency induces a significant survival of CML mice in a HSC-initiated model of disease through decrease proliferation and survival but does not reverse the transformation phenotype affecting adhesion and migration. This murine model may represent an adequate in vivo system to dissect out the specific signaling pathways involved in p210-BCR-ABL-induced stem cell transformation. Disclosures: Cancelas: CERUS CO: Research Funding; CARIDIAN BCT: Research Funding; HEMERUS INC: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 516-516
Author(s):  
Bin Zhang ◽  
Yin Wei Ho ◽  
Wei Tong ◽  
Ling Li ◽  
Ravi Bhatia

Abstract In chronic myelogenous leukemia (CML), in vivo long-term repopulating and leukemia stem cell (LSC) capacity is restricted to a small population of BCR-ABL+ long-term hematopoietic stem cells (LTHSC). Using an inducible transgenic SCL-tTA/BCR-ABL mouse model of CML, we have shown that leukemic cells with long-term repopulating and leukemia-initiating capacity have the Lin-Sca-1+Kit+Flt3-CD150+CD48- phenotype, also characteristic of normal LTHSC. Limiting dilution transplantation studies show that frequency of cells with LTHSC phenotype with long-term engraftment capacity (1:6) is considerably higher than those with leukemia-initiating capacity (1:80) suggesting that only some LTHSC may have LSC capacity (Cancer Cell 21:577, 2012). To further evaluate the basis for heterogeneity in LSC potential of BCR-ABL+ LTHSC, SCL-tTA/BCR-ABL mice were crossed with GFP expressing mice to allow tracking of donor cells, and a cohort of mice were transplanted with limiting numbers of GFP+LTHSC (200 per mouse) and followed for engraftment of GFP+ cells and development of CML (WBC>10,000/ul). Only 11 of 20 mice developed CML, whereas 9 mice showed long term engraftment without development of CML. GFP+ LTHSC selected from primary recipients were transplanted into secondary recipients (200 per mouse). Seven of 17 mice receiving cells from mice with CML also developed CML after the second transplant, whereas none of the mice receiving cells from non-CML mice developed CML, suggesting the distinction between leukemogenic versus non-leukemogenic LTHSC was maintained after transplantation. LTHSC isolated from primary recipients were also analyzed for expression of several HSC-regulatory genes by multiplex Q-PCR using the Fluidigm system. On hierarchical clustering, LTHSC from mice developing CML clustered separately from LTHSC from mice without CML. Amongst cell surface expressed genes, expression of the thrombopoietin (TPO) receptor MPL (p=0.006) and CD47 (p=0.006) was significantly increased in LTHSC from mice developing CML. We did not see significant differences in BCR-ABL expression in LTHSC from mice with or without CML. We further analyzed the relationship of MPL expression with CML LTHSC function. CML LTHSC (n=6) expressing high levels of MPL (MPLhi, top 10% based on MPL expression) showed significantly increased cell growth (p<0.0001) and CFC potential (p=0.0007) when cultured with TPO (10ng/ml) compared to LTHSC expressing low levels of MPL (MPLlo, lowest 10% based on MPL expression), as well as significantly increased cell growth (p=0.005) and CFC (p=0.03) compared to normal MPLhi LTHSC. Following transplantation, MPLhi LTHSC (200 per mouse) generated significantly higher short-term (4 wks, p=0.008) and long-term (16 wks, p=0.003) engraftment of donor cells compared to MPLlo LTHSC. Seven of 16 mice receiving MPLhi LTHSC developed CML compared to only 1 out of 17 mice receiving MPLlo LTHSC. We next evaluated heterogeneity of MPL expression in LTHSC (CD34+CD38-CD90+ cells) from CML patients and normal subjects. As was seen in murine studies, human CML MPLhi LTHSC cultured with TPO (10ng/ml) showed increased cell growth (p<0.0001) and CFC frequency (p=0.02) compared to CML MPLlo LTHSC, and significantly increased cell growth (p<0.0001) and CFC generation (p=0.02) compared to normal MPLhi LTHSC. Both baseline and TPO stimulated p-Stat3/5 levels were significantly higher in human CML MPLhi LTHSC compared with MPLlo LTHSC (p<0.0001), and in CML compared to normal MPLhi LTHSC. Interestingly p-Stat5 response peaked at 1 hour in CML LTHSC compared to 20 minutes in normal LTHSC, further indicating alterations in MPL signaling in CML LTHSC. Transplantation of CML MPLhi LTHSC (3x104 cells/mouse) into NSG mice resulted in higher engraftment of human myeloid cells in BM at both 4 and 16 weeks (p<0.05) compared with MPLlo LTHSC. Normal MPLhi LTHSC also showed higher engraftment in NSG mice at 4 and 16 weeks compared with MPLlo cells. Our studies indicate that CML LTHSC represent a heterogeneous population with varying LSC capacity. Heterogeneity in LSC capacity is associated with variability in expression of MPL. Higher levels of MPL expression in CML LTHSC are associated with significantly increased Stat3/5 signaling, in vitro and in vivo growth, and LSC capacity. These results identify MPL as a key regulator of LSC potential of BCR-ABL+ LTHSC and a potential target for LSC-directed therapeutics. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 55 ◽  
pp. 45-55 ◽  
Author(s):  
Katharina Senger ◽  
Gina Marka ◽  
Karin Soller ◽  
Vadim Sakk ◽  
Maria Carolina Florian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document