Role Of Connexin 32 In Hematopoiesis: Maintaining Quiescence Of Hematopoietic Stem Cells and Their Proliferation

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1185-1185
Author(s):  
Yoko Hirabayashi ◽  
Isao Tsuboi ◽  
Byung-Il Yoon ◽  
Jun Kanno ◽  
James Trosko ◽  
...  

Abstract Previously, we reported the findings of our studies on the role of connexin (Cx) 32 during steady-state hematopoiesis and its potential protective role against leukemogenesis. Namely, in wild-type mice, Cx32 expression was solely detected in primitive hematopoietic stem/progenitor cells (HSCs/HPCs). Since Cxs are essential molecules for multicellular organisms, Cxs are surmised to be present in the hematopoietic tissue to facilitate cell-cell communication between HSCs/HPCs themselves rather than between HSCs/HPCs and stromal cells. In addition, Cx32-knockout (KO) mice showed the following characteristics: first, a prominent decrease in the number of peripheral mononuclear cells (PMCs) associated with various HPCs; second, a significant increase in the number of HSCs, at least until 20 weeks of age; and third, an apparently delayed regeneration of HPCs after chemical abrasion. Furthermore, the incidence of leukemogenicity induced by methylnitrosourea increased prominently. These possible leukemogenic propensities taken together imply that Cx32 plays an important role in maintaining steady-state hematopoiesis and in suppressing leukemogenesis. In this study, first, we examined the cell kinetics of HPCs [CFU-GM, colony forming unit (CFU) granulomacrophage; CFU-S9/CFU-S13, CFU in spleen on day 9/13] by evaluating the percentage of cycling HPCs with continuous incorporation of bromodeoxyuridine (BrdUrd) in vivo for up to 3 months, followed by exposure to ultraviolet-A to eliminate cells that incorporated BrdUrd. Using this method with the continuous incorporation of BrdUrd in vivo in mice up to 1.5 years of age, we discovered the existence of a long-term and stable, dormant fraction in the HPCs of wild-type mice. Without Cx32, the percentage of the entire cycling fraction of CFU-S13 apparently increased continuously, which indicates that Cx32 could restore the quiescence of hematopoiesis and thereby maintain HSCs/HPCs. This is consistent with the findings that the number of HPCs increased and the number of HSCs decreased with aging in Cx32-KO mice. Next, we examined the bone-marrow reconstitution capability of HSCs of Cx32-KO mice by serial transplantation. Five hundred cells in the lineage-negative, c-kit-positive, and Sca1-positive (LKS) fraction isolated from wild-type and Cx32-KO mice (Ly5.2) were transplanted into lethally irradiated first recipients (Ly5.1) separately with 2x105 freshly isolated bone marrow cells from wild-type F1(Ly5.1/Ly5.2) mice as rescuing cells, which prevent acute radiation injury. Two months after transplantation, both groups showed reconstituted hematopoiesis without any significant differences in various hematopoietic parameters, although mice reconstituted with cells in the LKS fraction without Cx32 showed a rather higher average percentage of donor-origin PMCs and a lower average percentage of the donor-origin cells in the LKS fraction than those with Cx32 (wild-type group vs. Cx32-KO group, average percentage of Ly5.2 with respect to the total ± standard deviations (s.d.); PMCs, 34.7±14.3% vs. 50.7±9.9 %, p=0.006; cells in the LKS fraction, 20.8±5.2% vs. 14.2±5.3%, p=0.110). Then, donor cells (Ly5.2) in the LKS fraction were isolated from the primary recipients of both groups separately and 400 cells were transferred into each secondary recipient (Ly5.1) with 2x105 rescuing cells from F1(Ly5.1/Ly5.2) mice. Although secondary recipients from both groups showed reconstituted hematopoiesis without any significant differences in various hematopoietic parameters four months after reconstitution, similar to the primary recipients, cells of donor origin in the LKS fraction could be detected only in the wild-type group. Namely, four out of seven recipients in the wild-type group showed over 0.5% donor cells and the average percentage and s.d. for 4 mice was 25.1±27.9%, whereas none of the recipients out of five in the Cx32-KO group showed more than 0.5%. The above-mentioned findings in this study in addition to the previous findings imply that Cx32 plays an essential role in maintaining self-renewal proliferation of primitive hematopoietic stem cells to prevent their exhaustion, and also in suppressing neoplastic changes. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3469-3469
Author(s):  
Pratibha Singh ◽  
Seiji Fukuda ◽  
Janardhan Sampath ◽  
Louis M. Pelus

Abstract Interaction of CXCR4 expressed on hematopoietic stem and progenitor cells (HSPC) with bone-marrow stromal SDF-1 is believed to play a central role in retention or mobilization of HSPC. Recently, a mobilization regimen of G-CSF was shown to decrease osteoblast number resulting in reduced levels of bone-marrow SDF-1, however the detailed mechanism leading to this reduction is currently unknown. It is unlikely that G-CSF directly regulates osteoblast SDF-1 production since osteoblasts do not express G-CSF receptor. Proteolytic cleavage of SDF-1 by peptidase CD26 in the bone-marrow may be an alternative mechanism responsible for reduction of SDF-1 level. Although CD26 can cleave SDF-1 in vitro, direct evidence of SDF-1 cleavage by CD26 in vivo during G-CSF induced HSPC mobilization has not been demonstrated. We previously demonstrated that neutrophils are required for G-CSF induced HSPC mobilization and that CD26 expression on neutrophils, rather than HSPC, is critical for mobilization. To more fully understand the role of CD26 in altering SDF-1 protein/activity during G-CSF induced HSPC mobilization, we quantitated bone-marrow SDF-1 levels in CD26−/− and wild-type CD26+/+ mice by ELISA during G-CSF administration. A standard 4 day G-CSF mobilization regimen (100 μg/kg bid, sc × 4 days) decreased bone-marrow total SDF-1 from 4.55±0.3 to 0.52±0.06 ng/femur in wild-type CD26+/+ mice (8.7-fold) and from 4.51±0.3 to 0.53±0.05 ng/femur (8.5-fold) in CD26−/− mice. However, despite an equivalent decrease in SDF-1, total CFU mobilization and the absolute number of mobilized SKL cells were decreased (3.1 and 2.0 fold lower, respectively) in CD26−/− mice compared to wild-type CD26+/+ controls. These results suggest that the decrease in total SDF-1 level in marrow seen following G-CSF treatment is independent of CD26. Cytological examination of bone-marrow smears showed that the reduction in SDF-1 levels in bone-marrow of both wild-type CD26+/+ and CD26−/− mice following G-CSF administration correlated with an increase in total absolute bone-marrow neutrophil cell number, suggesting a role for neutrophils in modulation of SDF-1 protein. To determine if neutrophils affect osteoblast SDF-1 production, bone marrow Gr-1+ neutrophils from wild-type CD26+/+ and CD26−/− mice were purified using anti-Ly6G magnetic beads and co-cultured with MC3T3-E1 preosteoblasts in vitro. Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased pre-osteoblast SDF-1 production by similar amounts (15.4-fold vs 14.8-fold respectively), while Gr-1 neg cells from both wild-type CD26+/+ or CD26−/− were without effect on SDF-1 levels. Similarly, Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased SDF-1 produced by MC3T3-E1-derived osteoblasts from 1.85±0.3 to 0.52±0.06 ng/ml (3.5 fold) and 0.56±0.07 ng/ml (3.3 fold) respectively, with Gr-1neg cells having no effect. Gr-1+ neutrophils either from wild-type or CD26−/− mice, but not Gr-1neg cells, significantly induced apoptosis of MC3T3-E1 cells as measured by Annexin-V staining (70.5%±10.2 vs 71.2%±12.5 for wild-type CD26+/+ and CD26−/− neutrophils respectively) and significantly inhibited osteoblast activity (20-fold vs 20.6-fold for CD26+/+ and CD26−/− neutrophils respectively) as measured by osteocalcin expression. Furthermore, irrespective of G-CSF treatment, an inverse correlation between absolute neutrophil number and SDF-1 protein levels was observed, suggesting that G-CSF induces neutrophil expansion but does not directly affect SDF-1 production. Collectively, these results provide additional support for the critical role of neutrophils in G-CSF induced mobilization and strongly suggested that neutrophils directly regulate bone-marrow SDF-1 levels independent of CD26 activity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1224-1224
Author(s):  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1224 How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we show that, in a hematopoietic stem cell (HSC) -specific inducible knockout model, the cytoskeleton-modulating protein profilin 1 (pfn1) is essential for the maintenance of multiple cell fates and metabolism of HSCs. The deletion of pfn1 in HSCs led to bone marrow failure, loss of quiescence, increased apoptosis, and mobilization of HSCs in vivo. In reconstitution analyses, pfn1-deficient cells were selectively lost from mixed bone marrow chimeras. By contrast, pfn1 deletion did not significantly affect differentiation or homing of HSCs. When compared to wild-type cells, levels of expression of Hif-1a, EGR1, and MLL were lower and an earlier switch from glycolysis to mitochondrial respiration with increased ROS level was observed in pfn1-deficient HSCs. This switch preceded the detectable alteration of other cell fates. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that pfn1 maintained metabolism is required for the quiescence of HSCs. Furthermore, we demonstrated that expression of wild-type pfn1 but not the actin-binding deficient or poly-proline binding-deficient mutants of pfn1 rescued the defective phenotype of pfn1-deficient HSCs. This result indicates that actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Thus, pfn1 plays an essential role in regulating the retention and metabolism of HSCs in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 350-350
Author(s):  
Kyung-Hee Chang ◽  
Amitava Sengupta ◽  
Ramesh C Nayak ◽  
Angeles Duran ◽  
Sang Jun Lee ◽  
...  

Abstract In the bone marrow (BM), hematopoietic stem cells and progenitors (HSC/P) reside in specific anatomical niches. Among these niches, a functional osteoblast (Ob)-macrophage (MΦ) niche has been described where Ob and MΦ (so called "osteomacs") are in direct relationship. A connection between innate immunity surveillance and traffic of hematopoietic stem cells/progenitors (HSC/P) has been demonstrated but the regulatory signals that instruct immune regulation from MΦ and Ob on HSC/P circulation are unknown. The adaptor protein sequestosome 1 (Sqstm1), contains a Phox bemp1 (PB1) domain which regulates signal specificities through PB1-PB1 scaffolding and processes of autophagy. Using microenvironment and osteoblast-specific mice deficient in Sqstm1, we discovered that the deficiency of Sqstm1 results in macrophage contact-dependent activation of Ob IKK/NF-κB, in vitro and in vivo repression of Ccl4 (a CCR5 binding chemokine that has been shown to modulate microenvironment Cxcl12-mediated responses of HSC/P), HSC/P egress and deficient BM homing of wild-type HSC/P. Interestingly, while Ccl4 expression is practically undetectable in wild-type or Sqstm1-/- Ob, primary Ob co-cultured with wild-type BM-derived MΦ strongly upregulate Ccl4 expression, which returns to normal levels upon genetic deletion of Ob Sqstm1. We discovered that MΦ can activate an inflammatory pathway in wild-type Ob which include upregulation of activated focal adhesion kinase (p-FAK), IκB kinase (IKK), nuclear factor (NF)-κB and Ccl4 expression through direct cell-to-cell interaction. Sqstm1-/- Ob cocultured with MΦ strongly upregulated p-IKBα and NF-κB activity, downregulated Ccl4 expression and secretion and repressed osteogenesis. Forced expression of Sqstm1, but not of an oligomerization-deficient mutant, in Sqstm1-/- Ob restored normal levels of p-IKBα, NF-κB activity, Ccl4 expression and osteogenic differentiation, indicating that Sqstm1 dependent Ccl4 expression depends on localization to the autophagosome formation site. Finally, Ob Sqstm1 deficiency results in upregulation of Nbr1, a protein containing a PB1 interacting domain. Combined deficiency of Sqstm1 and Nbr1 rescues all in vivo and in vitro phenotypes of Sqstm1 deficiency related to osteogenesis and HSC/P egression in vivo. Together, this data indicated that Sqstm1 oligomerization and functional repression of its PB1 binding partner Nbr1 are required for Ob dependent Ccl4 production and HSC/P retention, resulting in a functional signaling network affecting at least three cell types. A functional ‘MΦ-Ob niche’ is required for HSC/P retention where Ob Sqstm1 is a negative regulator of MΦ dependent Ob NF-κB activation, Ob differentiation and BM HSC/P traffic to circulation. Disclosures Starczynowski: Celgene: Research Funding. Cancelas:Cerus Co: Research Funding; P2D Inc: Employment; Terumo BCT: Research Funding; Haemonetics Inc: Research Funding; MacoPharma LLC: Research Funding; Therapure Inc.: Consultancy, Research Funding; Biomedical Excellence for Safer Transfusion: Research Funding; New Health Sciences Inc: Consultancy.


Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 318-322
Author(s):  
J Tsunoda ◽  
S Okada ◽  
J Suda ◽  
K Nagayoshi ◽  
H Nakauchi ◽  
...  

The treatment of mice with high doses of 5-fluorouracil (5-FU) results in an enrichment of primitive hematopoietic progenitors. Using this procedure, we obtained a new class of murine hematopoietic colonies that had very high secondary plating efficiencies in vitro and could differentiate into not only myeloid cells but also into lymphoid lineage cells. The phenotypes of interleukin-3 (IL-3) induced blast colony cells were Thy-1-positive and lineage-marker-negative. We examined whether these blast colony cells contained primitive hematopoietic stem cells in vivo and could reconstitute hematopoietic tissues in lethally irradiated mice. Blast colony cells could generate macroscopic visible spleen colonies on days 8 and 12, and 5 x 10(3) blast cells were sufficient to protect them from lethally irradiation. It was shown that 6 or 8 weeks after transplantation of 5 x 10(3) blast cells, donor male cells were detected in the spleen and thymus of the female recipients but not in the bone marrow by Southern blot analysis using Y-encoded DNA probe. After 10 weeks, bone marrow cells were partially repopulated from donor cells. In a congenic mouse system, donor-derived cells (Ly5.2) were detected in the thymus and spleen 6 weeks after transplantation. Fluorescence-activated cell sorter analyses showed that B cells and macrophages developed from donor cells in the spleen. In the thymus, donor-derived cells were found in CD4, CD8 double-positive, single-positive, and double-negative populations. Reconstitution of bone marrow was delayed and myeloid and lymphoid cells were detected 10 weeks after transplantation. These results indicate that IL-3-induced blast cells contain the primitive hematopoietic stem cells capable of reconstituting hematopoietic organs in lethally irradiated mice.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3710-3715 ◽  
Author(s):  
Suzanne Kirby ◽  
William Walton ◽  
Oliver Smithies

Abstract In a previous study, it was found that a truncated erythropoietin receptor transgene (tEpoR tg) enables multilineage hematopoietic progenitor amplification after treatment with erythropoietin (epo) in vitro and in vivo. This study used competitive bone marrow (BM) repopulation to show that tEpoR tg facilitates transplantation by hematopoietic stem cells (HSC). Individual multilineage colonies, committed myeloid progenitor colonies, and lymphoid colonies (pre-B colony-forming units) were grown from the marrow of animals 6 months after they received a 50/50 mixture of transgene and wild-type BM cells. In epo-treated recipients, the transgene-bearing cells significantly outcompeted the wild-type cells (84%-100% versus 16%-0%, respectively). In recipients treated with phosphate-buffered saline, the repopulation was minimally different from the donor mixture (49%-64% transgene versus 51%-36% wild-type). The epo-induced repopulation advantage is maintained in secondary transplants. In addition, neither accelerated HSC depletion nor uncontrollable proliferation occurred during epo-stimulated serial transplants of transgene-containing BM. Thus, the tEpoR tg functions in a benign fashion in HSC and allows for a significant and controllable repopulation advantage in vivo without excessive HSC depletion relative to wild-type BM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 857-857
Author(s):  
Gregor B. Adams ◽  
Ian R. Alley ◽  
Karissa T. Chabner ◽  
Ung-il Chung ◽  
Emily S. Marsters ◽  
...  

Abstract During development, hematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, which remains the site of hematopoiesis throughout adulthood. In the bone marrow the HSCs are located at the endosteal surface, where the osteoblasts are a key component of the stem cell niche. The exogenous signals that specifically direct HSCs to the bone marrow have been thought to include stimulation of the chemokine receptor CXCR4 by its cognate ligand stromal derived factor-1α (SDF-1α or CXCL12). However, experiments in which CXCR4−/− fetal liver hematopoietic cells were transplanted into wild-type hosts demonstrated efficient engraftment of the HSCs in the bone marrow. In addition, treatment of HSCs with inhibitors of Gαi-coupled signaling, which blocks transmigration towards SDF-1αin vitro, does not affect bone marrow homing and engraftment in vivo. Therefore, we examined whether Gsα-coupled mechanisms play a key role in the engraftment of the HSCs in the bone marrow environment. Utilizing an inducible-conditional knockout of Gsα, we found that deletion of the gene in hematopoietic bone marrow cells did not affect their ability to perform in the in vitro primitive CFU-C or LTC-IC assay systems. However, Gsα−/− cells were unable to establish effective hematopoiesis in the bone marrow microenvironment in vivo in a competitive repopulation assay (41.1% contribution from wild-type cells versus 1.4% from knockout cells). These effects were not due to an inability of the cells to function in the bone marrow in vivo as deletion of Gsα following establishment of hematopoiesis had no effects on the HSCs. Examining the ability of the HSCs to home to the bone marrow, though, demonstrated that deletion of Gsα resulted in a marked impairment of the ability of the stem cells to localize to the marrow space (approximately 9-fold reduction in the level of primitive cell homing). Furthermore, treatment of BM MNCs with an activator of Gsα augmented the cells homing and thus engraftment potential. These studies demonstrate that Gsα is critical to the localization of HSCs to the bone marrow. Which receptors utilize this pathway in this context remains unknown. However, Gsα represents a previously unrecognized signaling pathway for homing and engraftment of HSCs to bone marrow. Pharmacologic activation of Gsα in HSC ex vivo prior to transplantation offers a potential method for enhancing stem cell engraftment efficiency.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2221-2221
Author(s):  
Cyrus Khandanpour ◽  
Ulrich Duehrsen ◽  
Tarik Möröy

Abstract Exogenous toxic substances often cause the initiation and development of leukemia and lymphoma by acting as mutagens. N-ethyl-N-nitrosourea (ENU) is a paradigmatic example for such a substance, which introduces point mutations in the genome through DNA damage and repair pathways. ENU is widely used to experimentally induce T-cell lymphomas in mice. We have used ENU to investigate whether the hematopoietic transcription factor Gfi1 is required for lymphomagenesis. The Gfi1 gene was originally discovered as a proviral target gene and a series of experiments with transgenic mice had suggested a role of Gfi1 as a dominant oncogene with the ability to cooperate with Myc and Pim genes in the generation of T-cell lymphoma. In addition, Gfi1 deficient mice showed a defect in T-cell maturation but also aberration in myeloid differentiation and an accumulation of myelomonocytic cells. ENU was administered i.p. once a week for three weeks with a total dose of 300mg/kg to wild type (wt) and Gfi1 null mice. Wild type mice (12/12) predominantly developed T-cell tumors and rarely acute myeloid leukemia, as expected. However, only 2/8 Gfi1 −/− mice succumbed to lymphoid neoplasia; they rather showed a severe dysplasia of the bone marrow that was more pronounced than in wt controls. These changes in Gfi1 null mice were accompanied by a dramatic decrease of the LSK (Lin-, Sca1- and c-Kit+) bone marrow fraction that contains hematopoietic stem cells and by a higher percentage (18%) of bone marrow cells, not expressing any lineage markers (CD4, CD 8, Ter 119, Mac1, Gr1, B220, CD3). In particular, we found that the LSK subpopulation of Gfi1 deficient mice showed a noticeable increase in cells undergoing apoptosis suggesting a role of Gfi1 in hematopoietic stem cell survival. In addition, Gfi1−/− bone marrow cells and thymic T-cells were more sensitive to DNA damage such as radiation and exposure to ENU than their wt counterparts pointing to a role of Gfi1 in DNA damage response. Our results indicate that Gfi1 is required for development of T-cell tumors and that a loss of Gfi1 may sensitize hematopoietic cells and possibly hematopoietic stem cells for programmed cell death. Further studies have to show whether interfering with Gfi1 expression or function might represent a tool in the therapy of leukemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1604-1604
Author(s):  
HoangDinh Huynh ◽  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1604 Previously we identified IGFBP2 as an extrinsic factor that supports ex vivo expansion of hematopoietic stem cells (HSCs). The role of IGFBP2 in HSCs and cancer is very intriguing. IGFBP2 can bind to insulin-like growth factor (IGF) ligands and displays IGF-dependent growth inhibitory effects on many cell types. On the other hand, IGFBP2 is capable of stimulating growth of certain cancer cells, and is overexpressed in many cancer patients and its expression is correlated with cancer progression. Here we sought to study the role of IGFBP2 in regulation of the activity of normal HSCs. We showed that IGFBP2 was expressed in differentiated hematopoietic cells and bone marrow stroma but not in HSCs. Consistent with its gene expression pattern, IGFBP2-/- HSCs had similar repopulation activity as their wild-type counterparts. By contrast, when we transplanted HSCs into IGFBP2-/- or wild-type recipient mice, we found decreased in vivo repopulation of HSCs in primary and secondary transplanted IGFBP2-/- recipients, suggesting that the environmental IGFBP2 positively supports HSC activity. Further co-culture of HSCs with IGFBP2-/- or wild-type bone marrow stromal cells indicated that IGFBP2 produced by bone marrow stroma indeed supports HSC expansion. Consistently, HSCs in IGFBP2-/- mice showed decreased frequency and cell cycling, and had upregulated expression of cell cycle inhibitors of p21, p16, and p19. To determine whether IGFBP2's effect on HSCs depends on IGF signaling, we compared the repopulation of donor cells deficient for the IGF type I receptor in wild-type and IGFBP2-/- recipients. These HSCs that are defective in IGF signaling still have decreased repopulation in IGFBP2-/- recipients, suggesting that the environmental effect of IGFBP2 on HSCs is independent of IGF signaling. To identify the functional domain of IGFBP2 in regulation of HSC activity, we constructed IGFBP2 with mutated RGD domain or deleted c-terminus and used the mutant IGFBP2 proteins in ex vivo culture of HSCs. We found that the c-terminus of IGFBP2 is essential to support HSC activity. We are currently in the process of identifying the potential receptor of IGFBP2 on HSCs. In summary, we found that IGFBP2 supports the cycling of normal HSCs, and this effect is independent of IGF signaling. Our study is important in revealing the relationship among environmental cues and cell fates of stem cells and opens up a new avenue in investigation of the roles of IGFBP2 in stem cells and cancer. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2151-2158 ◽  
Author(s):  
Kevin P. Battaile ◽  
Raynard L. Bateman ◽  
Derik Mortimer ◽  
Jean Mulcahy ◽  
R. Keaney Rathbun ◽  
...  

Fanconi anemia (FA) is an autosomal recessive disorder characterized by birth defects, increased incidence of malignancy, and progressive bone marrow failure. Bone marrow transplantation is therapeutic and, therefore, FA is a candidate disease for hematopoietic gene therapy. The frequent finding of somatic mosaicism in blood of FA patients has raised the question of whether wild-type bone marrow may have a selective growth advantage. To test this hypothesis, a cohort radio-ablated wild-type mice were transplanted with a 1:1 mixture of FA group C knockout (FACKO) and wild-type bone marrow. Analysis of peripheral blood at 1 month posttransplantation showed only a moderate advantage for wild-type cells, but upon serial transplantation, clear selection was observed. Next, a cohort of FACKO mice received a transplant of wild-type marrow cells without prior radio-ablation. No wild-type cells were detected in peripheral blood after transplantation, but a single injection of mitomycin C (MMC) resulted in an increase to greater than 25% of wild-type DNA. Serial transplantation showed that the selection occurred at the level of hematopoietic stem cells. No systemic side effects were observed. Our results show that in vivo selection for wild-type hematopoietic stem cells occurs in FA and that it is enhanced by MMC administration.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2493-2493
Author(s):  
Yutein Chung ◽  
Huiyan Jin ◽  
Claire Trasorras ◽  
Francina Gonzalez ◽  
Sang Hee Min

Primary Myelofibrosis (PMF) is a chronic myeloproliferative disorder characterized by excessive bone marrow (BM) fibrosis that can lead to ineffective hematopoiesis and reduced survival. PMF patients develop several megakaryocyte (MK) abnormalities including increased proliferation, abnormal morphology and upregulated expression of pro-fibrotic genes. Although several studies support the role of MK in BM fibrosis, the significance of MK in the development of BM fibrosis has not been demonstrated in vivo. Here, we investigated the in vivo role of MK in the pathogenesis of BM fibrosis. First, we reproduced an established bone marrow transplantation (BMT) mouse model of PMF. To achieve this, lethally irradiated wild-type mice were transplanted with wild-type hematopoietic stem cells (HSC) transduced with either MPLW515L gene construct (MPLW515L BMT) or MIGR1 empty vector (MIGR1 BMT). Consistent with previous studies, starting at day 14 post-BMT, MPLW515L BMT mice gradually developed increased number of leukocytes and platelets, increased proliferation of abnormal megakaryocytes in the BM and spleen, hepatosplenomegaly with extra-medullary hematopoiesis, and reticulin fibrosis in the BM. Notably, robust fibrosis was also seen in the spleen and liver. Next, to study the significance of MK in the development of BM fibrosis, we developed a MPLW515L BMT mouse model in which MK lineage could be selectively ablated. We accomplished this using PF4-Cre inducible diphtheria toxin receptor transgenic mice (iDTR+/-/PF4-Cre) as BMT donors. HSCs from iDTR+/-/PF4-Cre mice were transduced with MPLW515L or MIGR1 empty vector and transplanted as described above. Beginning day 14 post-BMT, recipient mice were injected with diphtheria toxin (DT) or water every 48 hours. At day 20 and day 29, DT injection significantly depleted MK in both MPLW515L BMT and MIGR1 BMT groups compared to water injection. Importantly, DT-injected MPLW515L BMT mice displayed attenuated fibrosis in the BM, spleen, and liver compared to water-injected MPLW515L BMT mice. In addition, DT treatment decreased the level of alpha smooth muscle actin in both BM and spleen of MPLW515L BMT mice, which suggests that MKs are critical for myofibroblast differentiation. MK ablation did not leukocytosis, thrombocytosis or hepatosplenomegaly. Together, our study show that successful MK ablation in vivo reduces fibrosis development in the BM, spleen, and liver of the MPLW515L mouse model of PMF. In summary, these results support the essential role of MK in the pathogenesis of BM fibrosis in PMF. Further studies are underway to elucidate the mechanisms by which MK contribute to fibrosis in PMF. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document