The Splicing Factor Heterogeneous Nuclear Ribonucleoprotein L (hnRNPL) Restricts p53 Dependent and p53 Independent Cell Death Pathways In Hematopoietic Stem Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2445-2445
Author(s):  
Marie-Claude Gaudreau ◽  
Damien Grapton ◽  
Florian Heyd ◽  
Charles Vadnais ◽  
Brian T Wilhelm ◽  
...  

Abstract Hematopoiesis is sustained by a pool of multipotent hematopoietic stem cells (HSCs) that have the capacity to differentiate into cells of all blood cell lineages. The pool of long-lived HSCs is maintained throughout life by the self-renewal ability of HSCs. New evidence suggests the process of alternative splicing is an important regulator of the maturation and activation of blood and immune effector cells. It is presently estimated that almost all multi-exon genes in human genome undergo alternative pre-mRNA splicing, and aberrant splicing has been linked to a variety of human pathologies. However, the role that pre-mRNA splicing may have for HSCs behaviour remains largely unexplored. Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is an RNA-binding protein that regulates alternative splicing by binding exonic splicing silencers elements (ESS) resulting in exon exclusion from the mature mRNA. RT-PCR analyses showed that hnRNPL is expressed in early stages of hematopoiesis including HSCs and lineage restricted hematopoietic progenitors. To test the role of hnRNPL in hematopoietic differentiation, we have generated conditional deficient mice, since a constitutive deletion of hnRNPL results in early embryonic lethality. Animals carrying two hnRNPL-floxed alleles (hnRNPLfl/fl) can be deleted at adult stage by the pIpC inducible MxCre transgene or by the VavCre transgene, which is expressed in all hematopoietic cells starting at embryonic stage E14. VavCre+hnRNPLfl/fl mice were not viable and did not progress further in their development than embryonic stage E17.5 and ablation of hnRNPL by pIpC injection caused a high rate of mortality in adult MxCre+hnRNPLfl/fl mice compared to control animals. Both the fetal liver (FL) of VavCre+hnRNPLfl/fl mice and the bone marrow (BM) of adult MxCre+hnRNPLfl/fl mice had a significantly reduced cellularity. Furthermore, flow cytometric analysis revealed in both FL and BM a significant reduction in frequency and absolute numbers of all mature blood cells, the lymphoid and myeloid precursors, CLPS, CMPs and GMPs and to a lesser extent the erythroid/megakaryocytic precursors (MEPs). Methylcellulose and both competitive and non-competitive transplantation assays demonstrated that HSCs lacking hnRNPL cannot generate lineage-committed progenitors and have lost their self-renewal capacity and reconstitution potential. A genome-wide analysis of mRNA expression and splicing through next-generation RNA sequencing of wild-type (WT) or VavCre+hnRNPLfl/fl E14.5 Lin- c-kit+ fetal liver cells (FLCs) revealed that hnRNPL deficiency affects not only alternative splicing but also gene expression levels in hematopoietic progenitors. In the absence of hnRNPL, genes implicated in regulating apoptosis, DNA damage response and cell division where found up-regulated in Lin- c-kit+ FLCs. Among those genes, many were p53 effector genes such as Cdkn1a, Ccng1, Trp53inp1, TrailR2, Bax and Zmat3. In addition genes that are known to be required for normal hematopoiesis and HSCs functions such as Gfi1, CD34, Csfr1, Egr1 and Runx1 were found down-regulated in those cells. Further analyses by qPCR and Western blots confirmed those findings and also showed that the level of p53 protein expression was upregulated in VavCre+hnRNPLfl/fl FLCs although the mRNA level is the same as in the WT cells suggesting that hnRNPL affects p53 mRNA translation efficiency. Similarly, several genes found differentially spliced are implicated in cell cycle progression or required for normal hematopoiesis in FL such as Bcl11a, Cdk4, Ccnd2 and TRP53bp1. These results together with an increased level of Reactive Oxygen Species (ROS) and elevated levels of phosphorylated histone H2AX (γ-H2AX, a sensor for double strand DNA breaks) suggest that hnRNPL regulates the activation of a p53 dependent DNA damage response pathway in hematopoietic stem cells. As a consequence loss of hnRNPL results in a loss of hematopoietic stem and progenitor cells. Our data also suggest that hnRNPL does not only regulate alternative splicing but also expression levels of a set of specific effector genes involved in HSC survival, proliferation, ultimately affecting self-renewal. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1486-1486
Author(s):  
Marie-Claude Gaudreau ◽  
Ehssan Sharif Askari ◽  
Florian Heyd ◽  
Tarik Moroy

Abstract Abstract 1486 Poster Board I-509 Hematopoietic differentiation has to be tightly regulated since uncontrolled or exaggerated development of blood cells may lead to the development of leukemia or autoimmune diseases. Many mechanisms exist to control hematopoiesis on a molecular level, including the regulation of transcription, which has been intensely studied. However, new evidence suggests the process of alternative splicing to be an important regulator of the maturation and activation of blood- and immune effector cells. One of the factors that has been identified as a potential regulator of the immune response and controls alternative splicing is “heterogenous nuclear ribonucleoprotein L” (hnRNP L). This factor affects among others the alternative splicing of the CD45 gene, which encodes the major tyrosine phosphatase expressed on all hematopoietic cells. To investigate the biological role of hnRNP L as a regulator of alternative splicing in hematopoiesis, we have generated conditional hnRNP L knockout (KO) mice carrying floxed alleles that can be deleted by co expression of Cre recombinase. Both the inducible MxCre transgene or Vav-Cre transgene, which is active in all hematopoietic cells were introduced into hnRNP Lfl/fl mice. We found that the conditional deletion of hnRNP L by the Vav Cre transgene led to early mortality before birth (at stage E17.5) and flow cytometric analysis of fetal liver of hnRNP Lfl/fl, Vav-Cre mice or bone marrow from pIpC induced hnRNP Lfl/fl Mx-Cre mice showed a deficit in erythrocyte maturation. In addition, fetal thymi from hnRNP Lfl/fl X Vav-Cre mice were severely reduced in cellularity and showed disturbed T cell maturation. Moreover, the deletion of hnRNP L results in reduced numbers of Lin−Sca1+ckit+ (LSK) cells, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs) and megakaryocyte-erythrocyte progenitors (MEPs). Strikingly, while most of the progenitors and the short-term hematopoietic stem cells (HSCs) were affected by the deletion of hnRNP L, the population of long term HSCs was not reduced. We found a high percentage of Annexin V positive cells in the LSK population suggesting that the loss of progenitors and short term HSCs in hnRNP L deficient mice is due to an accelerated cell death. To test whether stem cells lacking hnRNP L were still functional, we sorted Lin−Sca1+ckit+ (LSK) cells and cultured them on either methylcellulose or the feeder cell lines OP9 and OP9-DL1. The co-culture with OP9 or OP9-DL1 cells demonstrated that hnRNP L−/− LSK cells had lost their potential to differentiate into B and T lymphocytes. Similarly, hnRNP L deficient LSK cells were unable to give rise to lymphoid, myeloid or erythroid colonies on methylcellulose. This suggests that hnRNP L is required to maintain not only the numbers of hematopoietic stem cells, but also their ability for multilineage differentiation. We conclude that the regulation of alternative splicing is an essential component of the regulatory network required to maintain hematopoietic differentiation and the functional integrity of hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4839-4839
Author(s):  
Sacha L. Prashad ◽  
Vincenzo Calvanese ◽  
Catherine Yao ◽  
Joshua Kaiser ◽  
Rajkumar Sasidharan ◽  
...  

Abstract Advances in pluripotent stem cell and reprogramming technologies have provided hope of generating transplantable hematopoietic stem cells (HSC) in culture. However, better understanding of the identity and regulatory mechanisms that define the self-renewing HSC during human development is required. We discovered that the glycophosphatidylinositol-anchored surface protein GPI-80 (Vanin-2), previously implicated in neutrophil diapedesis, distinguishes a functionally distinct subpopulation of human fetal hematopoietic stem and progenitor cells (HSPC) that possess self-renewal ability. CD34+CD90+CD38-GPI80+ HSPCs were the only population that could maintain proliferative potential and undifferentiated state in co-culture on supportive stroma, and displayed engraftment potential in sublethally irradiated NSG mice. GPI-80 expression also enabled tracking of human HSC during development as they migrate across fetal hematopoietic niches, including early fetal liver and bone marrow. Microarray analysis comparing CD34+CD90+CD38-GPI80+ HSPC to their immediate progeny (CD34+CD90+CD38-GPI80-) identified novel candidate self-renewal regulators. Knockdown of GPI80, or the top enriched transcripts encoding surface proteins (ITGAM) or transcription factors (HIF3a) documented the necessity of all three molecules in sustaining human fetal HSC self-renewal. These findings provide new insights to the poorly understood regulation of human HSC development and suggest that human fetal HSCs utilize common mechanisms with leukocytes to enable cell-cell interactions critical for HSC self-renewal. Disclosures: No relevant conflicts of interest to declare.


1984 ◽  
Vol 159 (3) ◽  
pp. 731-745 ◽  
Author(s):  
R A Fleischman ◽  
B Mintz

Bone marrow of normal adult mice was found, after transplacental inoculation, to contain cells still able to seed the livers of early fetuses. The recipients' own hematopoietic stem cells, with a W-mutant defect, were at a selective disadvantage. Progression of donor strain cells to the bone marrow, long-term self-renewal, and differentiation into myeloid and lymphoid derivatives was consistent with the engraftment of totipotent hematopoietic stem cells (THSC) comparable to precursors previously identified (4) in normal fetal liver. More limited stem cells, specific for the myeloid or lymphoid cell lineages, were not detected in adult bone marrow. The bone marrow THSC, however, had a generally lower capacity for self-renewal than did fetal liver THSC. They had also embarked upon irreversible changes in gene expression, including partial histocompatibility restriction. While completely allogeneic fetal liver THSC were readily accepted by fetuses, H-2 incompatibility only occasionally resulted in engraftment of adult bone marrow cells and, in these cases, was often associated with sudden death at 3-5 mo. On the other hand, H-2 compatibility, even with histocompatibility differences at other loci, was sufficient to ensure long-term success as often as with fetal liver THSC.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1269-1269 ◽  
Author(s):  
Lynn S. White ◽  
Deepti Soodgupta ◽  
Rachel L. Johnston ◽  
Jeffrey A. Magee ◽  
Jeffrey J. Bednarski

Abstract Hematopoietic stem cells (HSC) persist throughout life by undergoing extensive self-renewal divisions while maintaining an undifferentiated state. The mechanisms that support HSC self-renewal change throughout the course of development as temporal changes in transcriptional regulators coordinate distinct genetic programs in fetal, post-natal and adult HSCs. These self-renewal programs are often ectopically activated in leukemia cells to drive neoplastic proliferation and high expression of HSC-associated genes predicts a poor prognosis in acute myelogenous leukemia (AML). In this regard, it was recently shown that expression of the transcriptional regulator BCLAF1 (Bcl2 associated transcription factor 1) is increased in AML blasts relative to normal precursor populations and suppression of BCLAF1 causes reduced proliferation and induction of differentiation to a dendritic cell fate. These findings raise the question of whether BCLAF1 may regulate normal as well as neoplastic self-renewal programs. We find that Bclaf1 is highly expressed in HSCs versus committed bone marrow populations consistent with a potential role for this gene in HSC functions. To test whether BCLAF1 regulates HSC development and hematopoiesis, we used germline loss of function mice. Bclaf1-/- mice succumb to pulmonary failure shortly after birth due to poor lung development, so we assessed prenatal hematopoiesis. Bclaf1-deficient mice had significantly reduced HSC and hematopoietic progenitor cell (HPC) frequencies and numbers despite normal fetal liver cellularity. To determine if Bclaf1 is required for HSC function during fetal development, we performed competitive reconstitution assays. Fetal liver cells from Bclaf1+/+or Bclaf1-/-mice were transplanted along with wild-type competitor bone marrow cells into lethally irradiated recipient mice. Compared to recipients of Bclaf1+/+fetal liver cells, recipients of Bclaf1-/-cells had a significantly lower percentage of donor-derived leukocytes at all time points after transplantation as well as reduced percentage of donor HSCs at 16 weeks post-transplant. Notably, all leukocyte populations (B cells, T cells, granulocytes and macrophages) from Bclaf1-/-donors were reduced consistent with an abnormality in HSC repopulating activity rather than a defect in a specific differentiation pathway. Consistent with these findings, Bclaf-deficient cells did not engraft in competitive transplants with limiting numbers of sorted fetal liver HSCs whereas sorted wild-type Bclaf1+/+cells effectively reconstituted hematopoiesis in recipient mice. In addition, Vav-cre:Bclaf1flox/floxmice, which have selective deletion of Bclaf1 in hematopoietic cells, have reduced frequencies and numbers of fetal liver HSCs identical to the findings observed in germline Bclaf1-/-mice. These results show that loss of Bclaf1 leads to defective development and repopulating activity of fetal HSCs. Interestingly, when adult mice are successfully engrafted with Bclaf1-deficient HSCs, the donor HSCs suffer no additional functional impairment. Furthermore, in secondary transplant experiments Bclaf1-deficient HSCs maintain long-term repopulating activity. Thus, Bclaf1 may have distinct functions in fetal versus adult HSC self-renewal. Collectively, our findings reveal Bclaf1 is a novel regulator of fetal HSC function and suggest that it may have distinct functions in different developmental contexts. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2525-2525
Author(s):  
Takuo Katsumoto ◽  
Issay Kitabayashi

Abstract Abstract 2525 Poster Board II-502 MOZ (MOnocytic leukemia Zinc finger protein) and MORF (MOz Related Factor), Myst-type histone acetyltransferases, are involved in chromosome translocations associated with FAB-M4/5 subtypes of acute myeloid leukemia. We have reported that MOZ is essential for hematopoietic cell development and self-renewal of hematopoietic stem cells. To explore the possibility MORF also plays important roles in hematopoiesis, we generated Morf-deficient mice with homologous recombination methods. Morf−/− mice were smaller than their wildtype littermates and died within 4 weeks after birth on C57BL/6 background. In MORF−/− fetal liver, Flt3-negative KSL (c-Kit+ Sca-1+ Lineage-) cells containing hematopoietic stem cells were decreased. When fetal liver cells were transplanted into irradiated recipient mice, MORF−/− cells less efficiently reconstituted hematopoiesis than wild-type cells. Additionally, bone marrow cells reconstituted with MORF−/− cells rarely contributed to hematopoiesis in secondary transplants. To reveal relationship between MORF and MOZ in hematopoiesis, we generated double heterozygous (Moz+/− Morf+/−) mouse. Double heterozygous mice were smaller than wild-type littermates and died at least 4 weeks after birth. Numbers of KSL cells, especially Flt3- KSL cells and common myeloid progenitors were decreased in the double heterozygous embryos. The double heterozygous fetal liver cells also displayed less activity to reconstitute hematopoiesis than MOZ+/− or MORF+/− cells. Since MORF−/− mice and MOZ/MORF double heterozygous mice were alive at adult on a mixed C57BL/6/DBA2 genetic background, we investigated adult hematopoiesis in these mice. MORF−/− or MOZ/MORF double heterozygous mice were smaller than their wild-type littermates and had small numbers of thymocytes and splenocytes. However, there were no significant differences in number of bone marrow cells and hematopoietic lineage population in MORF−/− or MOZ/MORF double heterozygous mice. These results suggest that MORF as well as MOZ plays important roles in self-renewal of hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2634-2634
Author(s):  
Michael R. Copley ◽  
David G. Kent ◽  
Claudia Benz ◽  
Keegan M. Rowe ◽  
Stefan H. Woehrer ◽  
...  

Abstract Abstract 2634 Fetal and early neonatal hematopoietic stem cells (HSCs) are distinct from their adult counterparts by their rapid turnover and expansion rates in vivo. However, the mechanisms underlying the regulation of these properties are poorly understood. In previous studies using serial limiting-dilution competitive repopulating transplant assays, our lab has shown that the rapid expansion phenotype of fetal HSCs is at least partially intrinsically determined since significantly more daughter HSCs are produced from fetal as compared to adult HSCs when similar numbers are transplanted into the same type of irradiated adult host. Additionally, we have observed a conversion of fetal HSCs to the adult regeneration phenotype that occurs within six weeks of transplantation in the primary host. To facilitate a comparison of highly-purified subsets of fetal and adult HSCs identified by an identical phenotype, we adopted the use of the CD45+EPCR+CD150+CD48− (E-SLAM) phenotype which we found gave HSC purities of 20–50% for hematopoietic tissues from early fetal to aged adulthood. We then used comparative gene expression analysis to identify candidate regulators of the fetal HSC high self-renewal program. This gave 20 candidate genes whose transcript levels were measured by quantitative real time PCR in E-SLAM cells isolated from E14.5 fetal liver (FL) and adult bone marrow (ABM). Of these genes only Hmga2 and Smarcc1 showed significant differences (p<.05) in expression between fetal and adult HSCs and only Hmga2 maintained this differential expression when the same cells were stimulated to divide for 48 hrs in vitro. To test the hypothesis that high expression of Hmga2 is a necessary and sufficient factor in determining the fetal HSC self-renewal program, purified adult E-SLAM HSCs were transduced with Hmga2-overexpressing or control lentiviruses and the kinetics of transduced vs untransduced hematopoietic cells in a congenic serial-transplantation model were then analyzed. Interestingly, when BM cells from the primary repopulated mice (transplanted 6-weeks earlier) were injected into secondary animals and the peripheral blood was analyzed for donor-type %Y/GFP chimerism, the Hmga2-overexpressing cells were observed to have a competititve advantage and exhibited an ∼6-fold expansion relative to the untransduced cells. In contrast, the control virus-infected BM cells were found to be equally competitive. These findings support the hypothesis that high expression of Hmga2 may be a critical mediator of the high self-renewal phenotype of fetal HSCs. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 195 (6) ◽  
pp. 759-770 ◽  
Author(s):  
Hideaki Ohta ◽  
Akihisa Sawada ◽  
Ji Yoo Kim ◽  
Sadao Tokimasa ◽  
Seiji Nishiguchi ◽  
...  

The rae28 gene (rae28), also designated as mph1, is a mammalian ortholog of the Drosophila polyhomeotic gene, a member of Polycomb group genes (PcG). rae28 constitutes PcG complex 1 for maintaining transcriptional states which have been once initiated, presumably through modulation of the chromatin structure. Hematopoietic activity was impaired in the fetal liver of rae28-deficient animals (rae28−/−), as demonstrated by progressive reduction of hematopoietic progenitors of multilineages and poor expansion of colony forming units in spleen (CFU-S12) during embryonic development. An in vitro long-term culture-initiating cell assay suggested a reduction in hematopoietic stem cells (HSCs), which was confirmed in vivo by reconstitution experiments in lethally irradiated congenic recipient mice. The competitive repopulating units (CRUs) reflect HSCs supporting multilineage blood-cell production. CRUs were generated, whereas the number of CRUs was reduced by a factor of 20 in the rae28−/− fetal liver. We also performed serial transplantation experiments to semiquantitatively measure self-renewal activity of CRUs in vivo. Self-renewal activity of CRUs was 15-fold decreased in rae28−/−. Thus the compromised HSCs were presumed to reduce hematopoietic activity in the rae28−/− fetal liver. This is the first report to suggest that rae28 has a crucial role in sustaining the activity of HSCs to maintain hematopoiesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4739-4739
Author(s):  
Hiroyoshi Kunimoto ◽  
Yumi Fukuchi ◽  
Masatoshi Sakurai ◽  
Daichi Abe ◽  
Ken Sadahira ◽  
...  

Abstract Abstract 4739 Ten-eleven-translocation 2 (TET2) gene is one of the frequent targets of mutation in various hematologic malignancies. These observations suggest critical roles of TET2 dysfunction in their molecular pathogenesis. To investigate physiological roles of TET2 in hematopoiesis, we previously analyzed fetal liver (FL) hematopoiesis of Tet2 gene-trap (Tet2gt) mice and showed that Tet2gt/gt FL cells displayed enhanced self-renewal and long term repopulating (LTR) capacity with expansion of Lineage(−)Sca-1(+)c-Kit(+) (LSK) and common myeloid progenitor (CMP) fractions. However, there remain several questions unanswered. First, self-renewal capacity was examined only by using bulk FL cells and therefore effects of Tet2 loss on purified cell populations such as hematopoietic stem cells (HSCs) or hematopoietic progenitor cells (HPCs) remain elusive. Second, because other groups have reported myeloid transformation in Tet2 conditional knockout mice, it is possible that Tet2 loss confers self-renewal capacity to non-self-renewing myeloid progenitors such as CMPs. Third, effects of Tet2 haploinsufficiency on adult hematopoiesis was not examined using purified HSCs or HPCs. To address these issues, we analyzed E14.5 FL and adult bone marrow (BM) cells from Tet2gt mice. We first performed serial replating assay of FL-LSK cells in methylcellulose containing interleukin (IL)-3, IL-6, stem cell factor (SCF) and erythropoietin (Epo). In this assay, Tet2gt/gt FL-LSK cells showed significantly higher replating capacity as compared to that of WT cells. Interestingly, Tet2gt/gt FL-LSK cells formed various types of colonies including granulocyte-macrophage (GM) and erythrocyte-megakaryocyte (EM) colonies, whereas WT FL-LSK cells generated only GM colonies at the second time of replating, showing that multipotent differentiation capacity was maintained in Tet2gt/gt cells even in the presence of lineage-acting cytokines. Next we examined the self-renewal capacity of highly purified FL-HSCs (CD34+LSK or CD150+LSK cells) by competitive repopulation assay. As expected, the recipients of Tet2gt/gt CD34+LSK cells showed significantly higher donor chimerism in peripheral blood as compared to those receiving WT cells. Furthermore, CD150+LSK cells from Tet2+/gt and Tet2gt/gt FLs demonstrated higher peripheral blood repopulation in the secondary and tertiary recipient mice as compared to that of WT recipients in serial transplantation assay. These results indicate that the enhanced self-renewal and LTR capacity of Tet2-mutant FL cells was uniquely associated with highly purified HSCs. This conclusion also applied to the BM LSK cells from adult mice, since Tet2+/gt BM LSK cells also showed significantly higher peripheral blood contribution compared to the WT cells in serial transplantation assays. This result demonstrates that Tet2 haploinsufficiency is sufficient to confer the enhanced self-renewal and LTR capacity to HSCs in adult hematopoiesis. Lastly, we examined self-renewal capacity of FL CMPs by serial replating assay. Interestingly, Tet2gt/gt FL CMP cells displayed increased replating capacity as compared to WT cells. However, in vivo repopulation assay using Tet2+/+, Tet2+/gt, and Tet2gt/gt FL CMP cells showed no significant difference in peripheral blood chimerism among these recipients. Taken together, enhanced self-renewal and LTR capacity by Tet2 ablation is uniquely associated with HSCs in FL and adult BM, but not with myeloid progenitors, indicating that Tet2 regulates self-renewal program intrinsic to HSCs. In addition, Tet2 haploinsufficiency is sufficient to enhance self-renewal and LTR capacity of HSCs, which explains pathological relation between high incidence of heterozygous TET2 mutations and hematologic malignancies. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Hiroyoshi Kunimoto ◽  
Yumi Fukuchi ◽  
Masatoshi Sakurai ◽  
Ken Sadahira ◽  
Yasuo Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document