Evaluation Of Bcma As a Therapeutic Target In Multiple Myeloma Using An Antibody-Drug Conjugate

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4447-4447 ◽  
Author(s):  
Kwee L Yong ◽  
Fiona M Germaschewski ◽  
Manuel Rodriguez-Justo ◽  
Danton Bounds ◽  
Lydia Lee ◽  
...  

B-cell maturation antigen (BCMA) is upregulated at the terminal stages of plasma cell (PC) differentiation, and is expressed on normal and malignant PC. Apart from low levels of mRNA detected on dendritic cells, expression appears absent on other tissues, indicating the potential as a target for novel antibody therapeutics for multiple myeloma (MM). We generated a humanised anti-BCMA antibody, modified for Fc-enhanced function, and conjugated to mcMMAF (anti-BCMA antibody drug conjugate, ADC). Flow cytometric studies on human myeloma cell lines (HMCL) showed rapid internalisation of anti-BCMA antibody by flow cytometry and confocal microscopy. The internalised antibody was transported to the lysosome and was nearly undetectable by confocal microscopy after 6 hours, indicating the suitability of BCMA as a target for an antibody drug conjugate (ADC). BCMA expression reached original surface levels by 6 hours post antibody treatment, thus maintaining the cell as a target for effector mediated killing. Evaluation of BCMA expression on HMCL revealed variable surface expression (1/11 high, 5/11 moderate, 5/11 low). Tumour cell killing by the ADC was expression level, dose and time dependent. The highest expressing HMCL, H929, showed significant killing (60% at 100ng/mL) at 24 hours, and up to 90% after 2 days. Cells expressing moderate levels of BCMA required incubation for up to 4 days to show maximal levels of cell death, suggesting the importance of continued internalisation of the antibody/antigen complexes over this period. ARH77 cells were transduced to express varying levels of BCMA, and killing at 3 days (200ng/ml) was directly proportional to level of surface expression (NT 0% killing, Low BCMA 75% killing, High BCMA 90%). We studied surface antigen levels in a cohort of patients to ascertain the need for patient selection. Like the HMCL, patient CD138+ plasma cells (PC) displayed a range of expression. Of 67 patients tested, CD138+ PC from 12 expressed high levels, 52 expressed intermediate, and 3 had low/negative surface BCMA as determined by MFI ratio of specific antibody to isotype control. Non-CD138+ cells from the bone marrow (BM) were negative for BCMA. Immuno-histochemistry (IHC) on paraffin-embedded BM sections, using a murine antibody and dual staining with anti-Blimp1 to identify tumour cells, revealed both membrane and diffuse, or punctate, cytoplasmic staining. Expression levels varied, from high uniform, to heterogeneous and patchy, to uniform low level. In no patient were the tumour cells entirely negative for BCMA. There was broad correlation between FACS analysis and IHC, thus patients were divided into high, moderate and low expressing groups. Examination of patient and disease characteristics revealed no correlation between BCMA expression and disease stage, response to last treatment, time from diagnosis, isotype, CD56 expression, or cyclin D-type, but there was a trend towards higher BCMA levels in tumours with adverse genetics (90% of patients with adverse genetics had high/moderate levels cf 64% of patients with standard CGN (p=0.06, Fisher’s exact test, 2-tailed). CD138+ cells in LPL (n=3) were positive for BCMA, but CD20+ lymphocytes were negative. Serum BCMA levels in MM patients (175.6±242.6ng/mL; mean±SD, n=34) were higher than in normal subjects (9.28±1.9ng/mL; n=38) but no correlation with bone marrow plasmacytosis or surface BCMA was noted. Levels appeared similar between new diagnosis (147.6±190.8ng/mL; mean±SD, n=8) and relapsed disease (184.3±259.1ng/mL; n=26). We tested ADC activity on primary tumour cells in whole BM cultures, enumerating viable CD138+ cells by flow cytometry. As with the HMCL, ADC mediated cytotoxicity was expression level, dose and time dependent, with a slower time course than with HMCL, perhaps reflecting the slower turn-over of these cells. In samples expressing moderate levels of BCMA, ADC-mediated cytotoxicity increased from 23.1±2.9% (mean±SEM, n=6) at 1-2 days to 48.3±5.1% at 4 days, and 61.2±6.2% by 6-7 days. Optimal doses of ADC ranged from 500ng-1ug/ml. In summary, these preclinical data in MM support the potential utility of an anti-BCMA ADC across the whole MM population, perhaps with particular efficacy in patients with adverse genetics, for whom an unmet need remains. Disclosures: Yong: GSK: Research Funding. Germaschewski:GSK: Employment. Mayes:GlaxoSmithKline: Employment. Sully:GlaxoSmithKline: Employment. Seestaller-Wehr:GlaxoSmithKline: Employment. Fieles:GlaxoSmithKline: Employment. Tunstead:GlaxoSmithKline: Employment. McCahon:GlaxoSmithKline: Employment. Craigen:GlaxoSmithKline: Employment.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1666-1666
Author(s):  
Abdel kareem Azab ◽  
Feda Azab ◽  
Costas M Pitsillides ◽  
Hai T. Ngo ◽  
Xiaoying Jia ◽  
...  

Abstract Multiple Myeloma (MM) is characterized by disseminated involvement of the bone marrow (BM), implying that its progression involves a continuous circulation of cells into the peripheral blood and homing to the BM. Moreover, the interaction of MM cells with the BM microenvironment plays a crucial role in MM pathogenesis and drug resistance. Previous studies have shown that SDF-1a regulates migration and homing of MM cells in and out of the bone marrow. Rho-A and Rac-1 GTPases are known regulators of cell adhesion and migration in hematopoeitic stem cells. Their role in MM, however, has not been previously elucidated. In this study, we examined the role of Rho-A and Rac-1 GTPases in the regulation of adhesion and chemotactic responses of MM cells to SDF-1a. The effects of the Rac- 1 inhibitor NSC23766, ROCK (down stream target of RhoA) inhibitor Y-27632, and their combination on SDF-1a induced chemotaxis of MMcell lines (MM1S, OPM-2, RPMI 8226) and patient samples were tested by the transwell chemotaxis assay and confirmed by live confocal microscopy. While the ROCK inhibitor abolished the chemotactic effect of SDF-1a in all cell lines and patient samples, the Rac-1 inhibitor did not have a significant effect, and the combination of the two showed similar effect to that of the ROCK inhibitor alone. Testing the effect of the inhibitors on surface expression of CXCR4 by flow cytometry revealed that neither of the inhibitors altered the surface expression of CXCR-4. We next studied the effect of the two inhibitors on the adherence of MM cell lines and patient samples to BM stromal cells (BMSCs), and found that both of the inhibitors had a similar significant reduction in the adhesion of MM cells to BMSCs from MM patients, with no further effect of their combination. We then tested the expression of different adhesion molecules on the MM cells and found that VLA-4 was highly expressed, and LFA-1 minimally expressed, on MM cells. In accord with this, the adhesion of the MM cells to Fibronectin and VCAM was far higher than their adhesion to ICAM. None of the inhibitors altered the surface expression of VLA-4 or LFA. However both inhibitors reduced the adhesion of MM cells to VCAM and fibronectin, but not to ICAM. These results are in agreement with our in vivo homing studies which utilized in vivo flow cytometry and in vivo confocal microscopy to show that both of the inhibitors delayed the homing of MM cells to the BM in a similar manner, with no additive effect for their combination. Furthermore, we investigated the role or Rho-A and Rac-1 in the downstream signaling of SDF-1a/CXCR-4 pathway by immunoblotting as well as Rho and Rac kinase assays. We found that Pertussis Toxin abolished the stimulatory effect of SDF-1a on Rho-A and Rac-1 GTPase, indicating that they are both downstream of CXCR-4. Inhibitors of PI3K (LY294002), AKT (triciribine) and ROCK reduced the activity of Rac-1, indicating that Rac-1 is downstream of PI3K, AKT, Rho-A, and ROCK. However, the inhibitors of PI3K and AKT increased the activity of Rho-A, and inhibition of the Rho-A pathway by the ROCK inhibitor increased p-AKT. These results indicate that Rho-A has a parallel pathway to that of PI3K downstream of CXCR4. Inhibition of Rac-1 did not alter the activation of Rho-A. Inhibition of either ROCK or Rac-1 similarly decreased the SDF-1a induced activation of focal adhesion kinase (FAK) and cofilin, with no additive affect of the combination. While the inhibition of ROCK abolished the SDF1a-induced activation of myosin light chain (MLC), actin polymerization and fillopodia (detected by confocal microscopy), the inhibition of Rac-1 did not alter the activation of MLC, reduced actin polymerization, and had a minimal effect on fillopodia. In conclusion, our results show that Rac-1 GTPase and its downstream targets FAK, cofilin and actin polymerization are major regulators of SDF-1a induced adhesion of MM cells through VLA-4, while fillopodia and chemotaxis are controlled by Rho-A GTPase through its effect on MLC and actin polymerization. These results suggest Rho-A and Rac-1 are potential therapeutic targets for the disruption of MM cells interaction with the BM microenvironment. Figure Figure


2016 ◽  
Vol 174 (6) ◽  
pp. 911-922 ◽  
Author(s):  
Lydia Lee ◽  
Danton Bounds ◽  
Jennifer Paterson ◽  
Gaelle Herledan ◽  
Katherine Sully ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 877-877
Author(s):  
Yu-Tzu Tai ◽  
Chirag Acharya ◽  
Mike Y Zhong ◽  
Michele Cea ◽  
Antonia Cagnetta ◽  
...  

Abstract B cell maturation antigen (BCMA), which is highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies (mAbs). We here investigated the anti-MM activity of J6M0-mcMMAF (GSK2857916), a humanized and afucosylated anti-BCMA antibody-drug conjugate (ADC) via uncleavable linker. This novel antagonist anti-BCMA antibody shows binding against all CD138-expressing MM cell lines (n=13) and patient MM cells (n=18), confirming universal BCMA expression on the surface of myeloma cells. Real-time qRT-PCR also showed significantly upregulated BCMA mRNA in CD138+ cells purified from MM patients vs. normal donors (p < 0.03). In contrast, BCMA is undetectable in CD138-negative cells from MM patients (n=3). J6M0-mcMMAF strongly blocks cell growth and induces caspase 3-dependent apoptosis in both drug-sensitive and -resistant MM cell lines and patient CD138+ MM cells, alone and in co-culture with BMSCs. In contrast, an isotype control antibody-drug conjugate (iso-mcMMAF) had no effect on viability of ANBL6 MM cells, alone or cocultured with BMSC. J6M0-mcMMAF specifically induces cell death in CD138-positive patient MM cells but not CD138-negative cells, demonstrating the minimal bystander killing against surrounding BCMA-negative cells. J6M0-mcMMAF completely blocks colony formation of MM cell lines (n=6) via induction of G2/M arrest, followed by apoptosis. This ADC does not affect viability of BCMA-negative NK, PBMC, and BMSCs, cultured alone or together, confirming its specific targeting of BCMA-positive MM cells. J6M0-mcMMAF, which has enhanced Fc-receptor binding due to afucosylation, significantly improved autologous antibody-dependent cellular cytotoxicity (ADCC) potency and maximum MM cell lysis against MM patient cells (n=5), when compared to J6M0 with normal Fc. Such augmented ADCC and maximum patient MM cell lysis by J6M0-mcMMAFis more pronounced in the autologous setting vs. the allogenic setting where MM cells and healthy donor effectors were used. Pretreatment of PBMC effector cells with lenalidomide further increased J6M0-mcMMAF-induced ADCC against MM cells in the presence or absence of BMSC. The in vivo efficacy of J6M0-mcMMAF was evaluated in murine subcutaneous xenograft models using NCI-H929 and OPM2 cells, as well as in NK-deficient SCID-beige mice with diffuse human MM bone lesions using MM1Sluc cells. Administration of J6M0-mcMMAF at 4 mg/kg (q3d x 4, ip) completely eliminated NCI-H929 and OPM2 xenograft tumors in all mice which remained tumor-free until the termination of studies at 60 and 100 days, respectively. In the MM1Sluc bone marrow dissemination model, J6M0-mcMMAF eradicates detectable tumors after 2 doses at 0.4 mg/kg (q3d x 9, ip), which resulted in extended survival (p<0.0001) and no weight loss of mice following 120 days. J6M0 treatment, although less effective than J6M0-mcMMAF, also had significantly prolonged survival (p<0.03) and diminished tumor burden when compared with control vehicle and isotype-treated groups, indicating a potential role of macrophage-mediated phagocytosis. Indeed, J6M0-mcMMAF recruits macrophage and mediates phagocytosis of target MM cells. Taken together, our studies show that J6M0-mcMMAF potently and selectively induce direct and indirect killing of MM tumor cells both in vitro and in vivo, providing a very promising next-generation immunotherapeutic in this cancer. Disclosures: Tai: Onyx: Consultancy. Mayes:GlaxoSmithKline: Employment. Craigen:GlaxoSmithKline: Employment. Gliddon:GlaxoSmithKline: Employment. Smothers:GlaxoSmithKline: Employment. Richardson:Millenium: Consultancy; Celgene: Consultancy; Johnson & Johnson: Consultancy; Bristol-Myers Squibb: Consultancy; Novartis: Consultancy. Munshi:Celgene: Consultancy; Novartis: Consultancy; Millennium: Consultancy. Anderson:celgene: Consultancy; onyx: Consultancy; gilead: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership.


2021 ◽  
Author(s):  
Adam Cotton ◽  
James Wells ◽  
Ian Seiple

<p>Here we report the reaction between biotin and azide-labelled oxaziridine reagents in aqueous conditions at room temperature. This method, which we call biotin redox-activated chemical tagging (BioReACT), achieves efficient and stable labelling of proteins with oxaziridine reagents. We functionally validate the method by generating an antibody-drug conjugate and numerous flow-cytometry reagents. Finally, we conjugate a functional click handle to a biotinylated oligonucleotide. These studies show that the biotin–oxaziridine reaction is a powerful approach for the efficient synthesis of stable protein and DNA bioconjugates.</p>


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5623-5623
Author(s):  
Andrew Hau ◽  
Tong Zhu ◽  
Rengang Wang ◽  
Megan Lau ◽  
Lingna Li ◽  
...  

BCMA (B-cell maturation antigen) is an integral membrane protein that belongs to the TNF receptor family with expression restricted to B cell lineage cells. The RNA is near universally detected in multiple myeloma (MM) cells and the protein is expressed on the surface of malignant plasma cells from patients with MM. In contrast, BCMA expression in normal tissues is very limited, making BCMA a promising target for antibody-drug conjugate (ADC) therapy. We have developed a BCMA-targeting ADC, employing a fully human anti-BCMA monoclonal antibody (mAb) identified from Sorrento's G-MAB antibody library, which was conjugated using proprietary Concortis linker-Duo 5.2 toxin technology resulting in BCMA-077 ADC. The mAb has a unique binding profile for BCMA and demonstrated strong preferential binding for BCMA-overexpressing cells but showed much less binding to lower BCMA-expressing cells. This property allows for more selective binding of the ADC on high BCMA-expressing cells, which are usually tumor cells while sparing low BCMA-expressing normal cells. In addition, we modified the Duo 5.2 payload decreasing the potency of the unconjugated toxin while retaining activity when conjugated to the mAb. The resulting ADC, BCMA-024, was compared to BCMA-077 using in vitro assays, including binding, internalization and cytotoxicity against tumor cell lines. The two ADCs exhibited strong activity and no difference in cytotoxic potency evident. The toxicity of the payload derivative was evaluated in a rodent model and it was found to be well tolerated not showing toxicity at a dose 10 times higher than the lethal dose of the parental toxin. Both ADCs carrying either the parental Duo 5.2 toxin or the derivative toxin payload were evaluated in vivo for anti-tumor activity in three different multiple myeloma xenograft models using different dose regimens. The data showed that both ADCs demonstrated potent BCMA-dependent in vivo anti-tumor activity in all xenograft BCMA-positive tumor models. The PK of the parental anti-BCMA mAb was investigated in non-human primates (NHP) and the parameters indicated a T1/2 of about 10 days. The GLP toxicity studies are ongoing. Our BCMA-ADCs have shown favorable anti-tumor activities combined with good safety profiles resulting in an expanded therapeutic window. The data make BCMA-077 and BCMA-024 promising candidates for continued preclinical development. Based on the totality of our preclinical data, we anticipate selecting a BCMA ADC clinical candidate for the treatment of multiple myeloma. Disclosures Hau: Concortis Biotherapeutics: Employment, Equity Ownership. Zhu:Levena Biopharma: Employment, Equity Ownership, Patents & Royalties. Wang:Concortis Biotherapeutics: Employment, Equity Ownership. Lau:Levena Biopharma: Employment, Equity Ownership. Li:Concortis Biotherapeutics: Employment, Equity Ownership. Li:Levena Biopharma: Employment, Equity Ownership. Sun:Levena Biopharma: Employment, Equity Ownership. Kovacs:Levena Biopharma: Employment, Equity Ownership. Khasanov:Levena Biopharma: Employment, Equity Ownership. Deng:Levena Biopharma: Employment, Equity Ownership. Yan:Levena Biopharma: Employment, Equity Ownership. Knight:Sorrento Therapeutics, Inc.: Employment, Equity Ownership. Kaufmann:Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Ji:Sorrento Therapeutics Inc: Employment, Equity Ownership, Patents & Royalties; Celularity, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Li:Levena Biopharma: Employment, Equity Ownership, Patents & Royalties; Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Zhang:Concortis Biotherapeutics: Employment, Equity Ownership, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document