Loss of EZH2 Inhibits Erythropoiesis and Accelerates the Development of Myelofibrosis in Jak2V617F Knock-in Mice

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 159-159
Author(s):  
Yue Yang ◽  
Hajime Akada ◽  
Dipmoy Nath ◽  
Robert E Hutchison ◽  
Golam Mohi

Abstract EZH2, a component of the polycomb repressive complex 2 (PRC2), catalyzes the trimethylation of histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Inactivating mutations of EZH2 have been found in myelodysplastic syndromes and myeloproliferative neoplasms (MPNs) including myelofibrosis (MF). EZH2 mutations are associated with poor prognosis in patients with MF. However, the contribution of EZH2 mutations in the pathogenesis of MF remains unknown. The JAK2V617F mutation has been found in a majority of cases of MPNs including ~50% patients with MF. However, it is not clear whether JAK2V617F mutation alone is sufficient to cause MF. Interestingly, inactivating EZH2 mutations co-exist with JAK2V617F mutation in significant cases of MF. To understand the role of JAK2V617F in MPNs, we previously generated a conditional Jak2V617F knock-in mouse, which exhibits all the features of human PV. To determine if EZH2 mutations cooperate with JAK2V617F mutation in MF, we crossed the conditional EZH2 knock-out mice with conditional Jak2V617F knock-in mice and assessed the effects of concomitant deletion of EZH2 and expression of heterozygous Jak2V617F in mice hematopoietic compartments. Whereas Jak2V617F expression resulted in significant increase in red blood cells (RBC), hemoglobin, hematocrit, white blood cells and platelets in the peripheral blood of the Jak2V617F knock-in mice, deletion of EZH2 significantly reduced the RBC, hemoglobin, and hematocrit parameters in Jak2V617F knock-in mice. Interestingly, platelet counts were further increased in EZH2-deleted Jak2V617F-expressing mice. Flow cytometric analysis showed significant increase in CD71+Ter119neg/lo early erythroid precursors and decrease in CD71+Ter119high late erythroid precursors in the bone marrow (BM) and spleens of EZH2-deleted Jak2V617F mice suggesting a defect in erythroid differentiation upon EZH2 deletion in Jak2V617F mice. Notably, megakaryocytic precursors (CD41+CD61+) were significantly increased in the BM and spleens of EZH2-deleted Jak2V617F mice consistent with increased number of platelets in the peripheral blood of these mice. Similar to human PV, Jak2V617F expression resulted in cytokine-independent CFU-E colonies in the BM and spleens of Jak2V617F knock-in mice. However, deletion of EZH2 markedly inhibited cytokine-independent CFU-E colonies in the BM and spleens of Jak2V617F knock-in mice. Histopathologic analysis revealed extensive fibrosis in the BM and spleens of EZH2-deleted Jak2V617F mice at 24 weeks after induction while heterozygous Jak2V617F knock-in mice BM and spleens showed very mild fibrosis at this age. Control and EZH2-deficient mice did not exhibit any fibrosis in their BM or spleens. In order to determine whether the effects of EZH2 deletion in Jak2V617F mice were cell autonomous, BM cells from pIpC induced control, EZH2-deficient, Jak2V617F knock-in and EZH2-deleted Jak2V617F-expressing mice were transplanted into lethally irradiated syngeneic recipient mice. Transplanted animals receiving EZH2-deleted Jak2V617F BM developed severe fibrosis in their BM and spleens within 8 weeks after transplantation. Furthermore, recipients of EZH2-deleted Jak2V617F BM exhibited severe anemia and became moribund by 8 weeks after transplantation. In contrast, transplanted animals receiving control, EZH2-deficient or Jak2V617F BM did not exhibit fibrosis at 8 weeks after transplantation. Thus, the phenotypes observed in EZH2-deficient Jak2V617F mice are hematopoietic cell-autonomous. Together, these data suggest that loss of EZH2 inhibits erythropoiesis, promotes megakaryopoiesis and accelerates the development of MF in mice expressing Jak2V617F. To gain insights into the mechanisms by which EZH2 deficiency accelerates the development of MF in Jak2V617F mice, we performed microarray gene expression analysis on purified long-term hematopoietic stem cells (LT-HSC; Lin-c-kit+Sca-1+CD34-Flk2-). Gene set enrichment analysis revealed that interferon response-related genes and the genes related to TNF signaling pathway were up-regulated in LT-HSC of EZH2-deficient Jak2V617F mice compared with Jak2V617F LT-HSC. Further studies will validate the targets of EZH2 that are de-repressed upon EZH2 deletion in MF induced by Jak2V617F. In conclusion, our studies show that loss of EZH2 cooperates with Jak2V617F mutation in the development of MF. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 797-797
Author(s):  
Avik Dutta ◽  
Robert E Hutchison ◽  
Golam Mohi

Abstract High Mobility Group AT Hook 2 (HMGA2) is a non-histone chromatin protein that regulates gene transcription and controls cell proliferation, survival and self-renewal of stem cells. HMGA2 is expressed at a low level in normal adult hematopoietic progenitors but is highly expressed in hematopoietic progenitors of patients with Myelofibrosis (MF). However, the contribution of HMGA2 to the pathogenesis of MF remains unknown. MF is the deadliest form of myeloprolifearative neoplasm (MPN) characterized by deposition of fibrous tissues in the bone marrow, increased megakaryopoiesis, ineffective erythropoiesis and extramedullary hematopoiesis. Median survival of patients with MF is less than 6 years. The JAK2V617F mutation has been found in 50-60% patients with MF. However, it is not clear whether JAK2V617F mutation alone is sufficient to cause MF. Interestingly, up-regulation of HMGA2 expression has been found in association with the JAK2V617F mutation in a significant percentage of patients with MF. To understand the role of JAK2V617F mutation in the pathogenesis of MPN, we previously generated a conditional Jak2V617F knock-in mouse. We observed that expression of heterozygous Jak2V617F in mouse hematopoietic compartments is sufficient to induce a polycythemia vera (PV)-like MPN. Recently, we have shown that deletion of EZH2 promotes the development of MF in Jak2V617F knock-in mice and EZH2 deletion increases the expression of HMGA2 in hematopoietic progenitors of EZH2-deleted Jak2V617F mice. To directly assess the effects of concomitant expression of HMGA2 and heterozygous Jak2V617F in mice hematopoietic compartments, we expressed control vector or HMGA2 in wild type and heterozygous Jak2V617F knock-in mice BM by lentiviral transduction and performed bone marrow transplantation into lethally irradiated C57BL/6 recipient mice. Whereas recipients of vector-transduced Jak2V617F knock-in BM cells exhibited a PV-like MPN characterized by increased red blood cells (RBC), hemoglobin, hematocrit and platelets in their peripheral blood, recipients of HMGA2-transduced Jak2V617F knock-in BM showed reduced hemoglobin and hematocrit parameters compared with recipients of vector-expressing Jak2V617F BM cells. Interestingly, peripheral blood neutrophil and platelet counts were further increased in transplanted animals receiving HMGA2-transduced Jak2V617F BM cells. Expression of HMGA2 also resulted in significantly larger spleen size in the transplanted animals receiving HMGA2-expressing Jak2V617F BM cells. Flow cytometric analysis showed significant increase in megakaryocytic precursors (CD41+) but decrease in erythroid precursors (CD71+/Ter119+) in the BM and spleens of transplanted animals receiving HMGA2-expressing Jak2V617F BM compared with control vector-expressing Jak2V617F BM. Furthermore, the frequency of hematopoietic stem/progenitor cells (LSK; Lin-Sca-1+c-kit+) was significantly increased in recipients of HMGA2-transduced Jak2V617F knock-in BM compared with control vector-transduced Jak2V617F knock-in BM or HMGA2-transduced wild type BM. Histopathologic analysis revealed extensive fibrosis in the BM and spleens from recipients of HMGA2-expressing Jak2V617F mice at 32 weeks after transplantation while BM and spleens from recipients of vector-transduced Jak2V617F knock-in BM or HMGA2-transduced wild type BM showed very little or no fibrosis at this age. Together, these data suggest that expression of HMGA2 promotes megakaryopoiesis and accelerates the development of MF in mice expressing Jak2V617F. To gain insights into the mechanisms by which expression of HMGA2 accelerates the development of MF in Jak2V617F mice, we performed RNA-sequencing analysis on purified LSK (Lin-Sca-1+c-kit+) cells. Gene set enrichment and pathway analyses revealed that the genes related to chemokine, TGF-β, MAP Kinase, PI3 kinase-Akt, mTOR and WNT signaling pathways were up-regulated in HMGA2-expressing Jak2V617F mice LSK compared with vector-expressing Jak2V617F LSK cells. We also found that HMGA2 directly binds to the promoter regions of some of these target genes and regulate their expression. Further studies will validate the targets of HMGA2 and determine their contribution in MF mediated by Jak2V617F. In conclusion, our studies show that expression of HMGA2 cooperates with Jak2V617F in the development of MF. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 111-111
Author(s):  
Dongqing Yan ◽  
Golam Mohi

Abstract The JAK2V617F mutation has been found in most patients with Ph-negative myeloproliferative neoplasms (MPNs) including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). Expression of JAK2V617F results in constitutive activation of several signaling molecules/pathways, such as Stat5, Stat3, Akt and Erk. Unraveling the contribution of these signaling pathways in MPNs will improve our understanding of the pathogenesis of MPNs and allow us to develop more effective targeted therapies. We have previously reported the generation of a conditional Jak2V617F knock-in mouse, which exhibits all the clinical features of human PV. Using this mouse model, we have demonstrated that Stat5 is absolutely required for the pathogenesis of PV induced by Jak2V617F. However, the contribution of other signaling molecules activated by Jak2V617F in the development and progression of MPNs still remains elusive. Stat3, a member of the family of signal transducer and activator of transcription (Stat), is often found activated in solid tumors and hematologic malignancies including MPNs. Although Stat3 is known to play a tumor-promoting function in various human malignancies, recent studies also have found a tumor suppressive function of Stat3 in certain malignancies. For instance, Stat3 negatively regulates BRAFV600E-induced thyroid tumorigenesis (Couto et al., Pro Natl Acad Sci USA 2012) or suppresses PTEN loss-induced malignant transformation of astrocytes (Iglesia et al., Genes Dev 2008). Thus, Stat3 can positively or negatively regulate cell growth and tumor progression. Here, we sought to determine the role of Stat3 in Jak2V617F-evoked MPN using conditional Stat3 knock-out (Stat3 floxed) and Jak2V617F knock-in mice. Whereas expression of Jak2V617F resulted an increase in red blood cells (RBC), hemoglobin, hematocrit, white blood cells (WBC), neutrophils and platelets in the peripheral blood of the Jak2V617F knock-in mice, deletion of Stat3 did not cause any significant change in RBC, hemoglobin, hematocrit and platelet numbers in Jak2V617F knock-in mice. Strikingly, Stat3 deficiency significantly increased nertrophil counts in mice expressing Jak2V617F. Flow cytometric analysis showed that deletion of Stat3 increased the hematopoietic stem cell (HSC) compartments (LSK, LT-HSC, ST-HSC) and GMP populations in the bone marrow (BM) and spleens of mice expressing Jak2V617F. However, MEP population was unaffected by Stat3 deletion. Cell cycle analysis using Hoechst/Pyronin Y staining revealed that Jak2V617F expression alone resulted in increased cycling of HSC-enriched LSK cells, and Stat3-deficiency further enhanced the cycling of Jak2V617F-expressing LSK cells. Stat3-deficiency also caused a marked expansion of Gr-1+/Mac-1+ population in the BM and spleens of mice expressing Jak2V617F. As a consequence, CD71+/Ter119+ population was proportionally reduced in Stat3-deficient Jak2V617F-expressing mice BM. Histopathologic analysis showed marked increase in granulocytes in the BM and spleens of Stat3-deficient Jak2V617F-expressing mice compared with mice expressing Jak2V617F. Stat3-deficient Jak2V617F-expressing mice also exhibited marked infiltration of neutrophils in their livers. Furthermore, deletion of Stat3 significantly reduced the survival of Jak2V617F knock-in mice. Together, these results suggest a negative role for Stat3 in Jak2V617F-induced MPN. Thus, Stat3 may not be a suitable therapeutic target for treatment of PV and other JAK2V617F-positive MPNs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 121-121 ◽  
Author(s):  
Dongqing Yan ◽  
Golam Mohi

Abstract Abstract 121 Version:1.0 StartHTML:0000000207 EndHTML:0000006199 StartFragment:0000002599 EndFragment:0000006163 SourceURL:file://localhost/Users/mohim/Desktop/ASH%202011/Dongqing%20Yan%202011%20ASH%20Abstract.doc The JAK2V617F mutation has been identified in most cases of Ph-negative myeloproliferative neoplasms (MPNs) including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). Expression of JAK2V617F results in constitutive activation of multiple signaling molecules/pathways. However, the key signaling downstream of JAK2V617F required for transformation, induction and maintenance of MPNs remains elusive. Using a mouse genetic strategy, we found that Stat5 is absolutely required for the pathogenesis of PV induced by Jak2V617F. Whereas inducible expression of Jak2V617F in mice resulted in all the features of human PV, including increase in red blood cells, hemoglobin, hematocrit, white blood cells, platelets, and splenomegaly, deletion of Stat5 in the Jak2V617F knock-in mice normalized all the blood parameters and the spleen size. Histopathologic analyses revealed that Stat5 deficiency blocked the development of PV in mice expressing Jak2V617F. In addition, deletion of Stat5 completely abrogated erythropoietin (Epo)-independent erythroid colony formation evoked by Jak2V617F, a hallmark feature of PV. Flow cytometric analysis revealed that concomitant deletion of Stat5 reduced the Jak2V617F-induced expansion of LSK (lin−Sca-1+c-kit+) and MEP (megakaryocyte-erythroid progenitors) as well as CD71+Ter119+ and Gr-1+Mac-1+ populations to normal levels. Unlike Jak2V617F knock-in mice, which developed myelofibrosis at old age, Stat5-deficient Jak2V617F-expressing mice failed to develop myelofibrosis. Re-expression of Stat5 in Stat5-deficient Jak2V617F knock-in mice bone marrow by retroviral transduction completely rescued the defects in transformation of hematopoietic progenitors and the PV phenotype. Furthermore, deletion of Stat5 after establishment of PV disease in the transplanted animals expressing Jak2V617F by injection with polyinosine:polycytosine (pI:pC) normalized the blood parameters and inhibited the progression of the disease. Together, these results indicate a critical function for Stat5 in the induction and maintenance of PV. Biochemical analyses revealed that Stat5 deficiency significantly inhibited constitutive phosphorylation of p70S6 kinase and markedly reduced expression of Bcl-xL, Cyclin-D2 and Pim-1 mediated by Jak2V617F. These suggest that p70S6 kinase, Bcl-xL, Cyclin-D2 and Pim-1 are downstream targets of Jak2V617F-Stat5 signaling, and they may play a role in hematopoietic transformation induced by Jak2V617F. These findings provide strong support for the development of Stat5 inhibitors as targeted therapies for the treatment of PV and other JAK2V617F-positive MPNs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3861-3861
Author(s):  
Hajime Akada ◽  
Saeko Hamada ◽  
Golam Mohi

Abstract Abstract 3861 A somatic point mutation (V617F) in the JAK2 tyrosine kinase was found in most cases of Ph-negative myeloproliferative neoplasms (MPNs) including ∼95% patients with polycythemia vera (PV) and 50–60% patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF). To investigate the contribution of JAK2V617F in MPNs, we generated a conditional Jak2V617F knock-in mouse (Akada et al., Blood 2010; 115: 3589–3597). Expression of Jak2V617F in all hematopoietic compartments including the hematopoietic stem cells (HSC) resulted in a PV-like disease associated with a marked expansion of erythroid progenitors in the bone marrow and spleen. Since Jak2 is essential for normal erythropoiesis and expression of Jak2V617F mutant enhances erythropoiesis, so we asked if erythroid progenitors are actual target cells for Jak2V617F mutation. To address this question, we have specifically expressed Jak2V617F in erythroid progenitors using the EpoR-Cre mice. Expression of heterozygous Jak2V617F in erythroid progenitors resulted in a polycythemia-like phenotype characterized by increase in hematocrit and hemoglobin, increased red blood cells, Epo-independent erythroid colonies, and splenomegaly. Erythroid lineage-specific expression of homozygous Jak2V617F resulted in significantly greater increase in hematocrit, hemoglobin, red blood cells, Epo-independent erythroid colonies, and splenomegaly compared to heterozygous Jak2V617F expression. These results suggest that erythroid lineage-restricted expression of Jak2V617F is sufficient to induce a polycythemia-like disease in a gene-dose dependent manner. However, transplantation of Jak2V617F-expressing erythroid progenitors (c-kithighTer119lowCD71high or c-kitlowTer119highCD71high) from the diseased mice into lethally irradiated recipients could not transfer the disease suggesting that Jak2V617F mutation does not confer self-renewal capacity to erythroid progenitors. We also observed that only Jak2V617F-expressing HSC has the unique capacity to serially transplant the myeloproliferative disease in mice. Taken together, our results suggest that HSCs are the disease-initiating cancer stem cells and erythroid progenitors are the target cells in Jak2V617F-evoked MPN. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 945-945
Author(s):  
Rialnat Adebisi Lawal ◽  
Kathleen E. McGrath ◽  
Laura M. Calvi

Abstract Osteolineage cells within the bone marrow microenvironment have been implicated in support and regulation of hematopoietic stem cells (HSCs). Recently, augmented hypoxia-inducible factor (HIF) signaling in osteoprogenitors has been shown to expand the HSC niche, and surprisingly these cells have also been demonstrated to express erythropoietin, the critical cytokine stimulating erythropoiesis. We therefore hypothesize that endosteal cells may represent an additional regulatory site for erythropoiesis. To further delineate the role of the osteolineage cells in the support of erythropoiesis, we isolated bone associated cells (BACs) with enzymatic digestion of adult C57bl/6 mice hind limbs after bone marrow flushing and depleted the BACs of CD45+ cells to enrich for osteogenic cells. We suspected some contribution of erythroid cells to CD45- BACs, however we were surprised to find that ter119+ cells represented a large percentage of BACs after enzymatic digestion. After CD45 depletion, ter119+ cells constituted about 30% percent compared to approximately 0.85% of CD45+ cells (33 ± 4.4vs. 0.85 ± 0.26, p= 0.0018) by flow cytometric analysis. Additionally, CD45 depleted BACs had approximately 46 fold higher osteocalcin expression than CD45+ cells (1300 ± 120 vs. 28 ± 9.5, p < 0.0001), while CD45/Ter119/CD31 depleted BACs had approximately 2000 fold higher osteocalcin expression than CD45/Ter119/CD31 (+) cells (2000 ± 520 vs. 0.98 ± 0.02, p= 0.0044) by qRT-PCR, confirming enrichment of the osteoblastic lineage by this immunophenotypic panel. These data suggest that there are a large number of erythroid lineage cells associated with the BACs along the endosteum. In the bone marrow of adult mice, ter119 + cells represented approximately 85% in the CD45- pool as compared to 5% in the CD45+ cell pool. To determine if the endosteum is an active site of erythropoiesis, we quantified erythroid progenitors and precursors in the BAC pool compared to whole bone marrow (wbm) and peripheral blood (pb) by both flow cytometric analysis and colony forming assays. Flow cytometric analysis demonstrated the presence of every phase of erythroid differentiation in the BAC pool, including the presence of phenotypic MEPs (wbm vs bac vs pb: 250 ± 30 vs 84 ± 22 vs 0), BFU-E (wbm vs bac vs pb: 300 ± 14 vs 110 ± 36 vs 0 ), CFU-E (wbm vs bac vs pb: 2900 ± 2 vs 430 ± 23 vs 1 ± 0.8) and proerythroblasts (wbm vs bac vs pb: 11000 ± 2500 vs 7600 ± 1600 vs 2300 ± 920) per million cells. The phenotypic frequency of CFU-E was particularly remarkable in the BACs (430 ± 23) as compared to peripheral blood (1 ± 0.8) , demonstrating that all stages of erythroid differentiation are found in tight association with the endosteum and are not due to contamination from circulating erythroid progenitors. Colony assays were performed for CFU-E (wbm vs. bac 108 ± 16 vs 6.3 ± 2 colonies per 20,000cells plated), BFU-E (wbm vs. bac 55 ±1.0 vs 2 ±1.0; colonies per 40,000 cells plated) and myeloid progenitors (wbm vs. bac 66 ± 28 vs 11 ± 2.5 ; colonies per 10,000 cells plated) also confirmed the presence of erythroid progenitors at endosteal sites. Together these results identify the endosteal surface as a site for erythroid differentiation. The presence of all phases of erythroid lineage differentiation in the BACs suggests a potential role for osteolineage cells for maintenance and regulation of erythropoiesis. Whether osteolineage cells contribute to erythroid lineage homeostasis and/or stress response, and whether activation or damage to osteolineage cells alters local erythroid differentiation remains to be demonstrated. However our data suggest further study of the endosteum and osteolineage cells as a potential and unexpected site of erythroid regulation, which could potentially be targeted to accelerate erythropoiesis and treat anemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 483-483
Author(s):  
Golam Mohi ◽  
Dongqing Yan ◽  
Fatoumata Jobe ◽  
Robert E Hutchison

Abstract The JAK2V617F mutation has been found in a majority of patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). Expression of JAK2V617F results in constitutive activation of the JAK2 tyrosine kinase and its downstream signaling pathways. JAK2 inhibitor therapy can reduce splenomegaly and constitutional symptoms but is not sufficient to cure or produce complete remission in patients with MPNs. Identification of critical signaling pathways/molecules required for the initiation and maintenance of MPNs will facilitate the development of more effective targeted therapies. To determine the role of JAK2V617F mutation in MPNs, we previously generated a conditional Jak2V617F knock-in mouse. We observed that expression of heterozygous Jak2V617F in mice hematopoietic compartments is sufficient to induce a PV-like MPN, whereas homozygous Jak2V617F expression accelerates the development of myelofibrosis. We have found that SHP2, a protein tyrosine phosphatase that positively regulates hematopoietic signaling, is constitutively phosphorylated in mouse and human hematopoietic cells expressing JAK2V617F. However, the contribution of SHP2 in the pathogenesis of MPNs induced by JAK2V617F remains elusive. Here, we sought to determine the role of SHP2 in JAK2V617F-evoked MPNs using conditional SHP2 knockout (SHP2 floxed) and Jak2V617F knock-in mice and MxCre line. Whereas expression of heterozygous Jak2V617F induced a PV-like MPN characterized by increase in red blood cells (RBC), white blood cells (WBC), neutrophils and platelets in the peripheral blood and splenomegaly, deletion of SHP2 normalized the blood parameters and spleen size in Jak2V617F knock-in mice. Flow cytometric analysis showed that deletion of SHP2 inhibited the expansion of erythroid, megakaryocytic, and granulocytic precursors in the bone marrow (BM) and spleens of Jak2V617F mice. Deletion of SHP2 also inhibited the expansion of hematopoietic stem cells and megakaryocyte-erythroid progenitors in the BM and spleens of Jak2V617F knock-in mice. Furthermore, deletion of SHP2 markedly inhibited the erythropoietin (Epo)-independent CFU-E colonies in the BM and spleens of Jak2V617F mice. In order to determine whether the effects of SHP2 deletion in Jak2V617F mice were cell autonomous, BM cells from uninduced control, MxCre;V617F/+ and MxCre;V617F/+;SHP2fl/fl mice were transplanted into lethally irradiated syngeneic recipient mice. Four weeks after transplantation, mice were injected with pI-pC to induce deletion of SHP2 and expression of Jak2V617F simultaneously. Transplanted animals receiving MxCre;V617F/+ BM developed a PV-like disease within 6 weeks after pI-pC induction. However, recipients of MxCre;V617F/+;SHP2fl/fl BM failed to induce the PV disease due to deletion of SHP2. Together, these data suggest that SHP2 is required for the initiation of PV-like MPN mediated by Jak2V617F. To determine if SHP2 is required for the maintenance of MPN evoked by Jak2V617F, uninduced wild type or MxCre;SHP2fl/fl mice BM cells were transduced with retroviruses expressing Jak2V617F and transplanted into lethally irradiated syngeneic recipient animals. Five weeks after transplantation, we assessed the peripheral blood counts to confirm the development of MPN disease. Transplanted animals receiving Jak2V617F-transduced wild type or MxCre;SHP2fl/fl mice BM were then divided into two groups- one group was injected with pI-pC (to induce deletion of SHP2 after establishment of the MPN disease); another group (control group) was injected with saline. We observed that deletion of SHP2 by pI-pC induction significantly inhibited the RBC, hematocrit, WBC and platelet counts in the peripheral blood and reduced the spleen size in transplanted animals expressing Jak2V617F. Moreover, deletion of SHP2 markedly inhibited the Epo-independent erythroid colonies in the BM and spleens of transplanted animals expressing Jak2V617F. Thus, SHP2 is not only required for the initiation of MPN but also required for the maintenance of MPN mediated by Jak2V617F. We have also observed that deletion of SHP2 blocks the development of myelofibrosis in Jak2V617F knock-in mice. In conclusion, our results suggest that SHP2 plays a critical role in the initiation and maintenance of MPNs evoked by Jak2V617F. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1469-1469
Author(s):  
Mona Khalaj ◽  
Carolien Woolthuis ◽  
Wenhuo Hu ◽  
Benjamin Heath Durham ◽  
Christopher Y. Park

Abstract Acute myeloid leukemia (AML) is composed of functionally heterogeneous cells including leukemic stem cells (LSCs), which exhibit the ability to self-renew and propagate disease. It is thought that failure of common chemotherapy regimens is due to insufficient eradication of LSCs. However, the mechanisms that maintain stem cell function in the hematopoietic system are not well understood. MicroRNAs play an important role in the regulation of normal and malignant hematopoietic stem cells. Our studies showed that miR-99, a miRNA highly expressed in AML patient cell populations enriched for LSC activity, is among the most highly expressed miRNAs in hematopoietic stem cells (HSCs), suggesting that miR-99 plays a role in regulating normal HSCs as well as LSCs. To test the role of miR-99 in normal hematopoiesis, we knocked down (KD) miR-99 in mouse HSCs (Lin-cKit+Sca1+CD34-SLAM+), which resulted in ~3 fold reduced methylcellulose colony formation upon secondary plating (P=0.01), as well as accelerated granulopoiesis as demonstrated by increased Gr1+Mac1+ cells 7 days after culture initiation (P<0.01), suggesting that miR-99 functions to suppresses differentiation. Consistent with this model, transplantation assays demonstrated >10-fold reduction in long-term engraftment capacity of miR-99 KD compared to scrambled controls (P=0.0004). In addition, Ki-67/DAPI staining of stably engrafted miR-99 KD hematopoietic stem and progenitor cells (HSPCs) showed increased cell cycling, demonstrating that miR-99 also maintains HSPC quiescence. Gene set enrichment analysis (GSEA) of RNA-sequencing data generated from stably engrafted Lin-Sca-1+c-Kit+ cells revealed that miR-99 KD induces significant depletion of LT-HSC gene signatures (P<0.001) and induction of a late progenitor signature (P<0.001), providing further evidence that miR-99 normally functions to maintain HSPCs in the undifferentiated state. To test whether miR-99 maintains LSCs, we performed miR-99 KD experiments using the MLL-AF9 retroviral mouse model. miR-99 KD resulted in a significant extension in survival in secondary transplants compared to scrambled controls (median 92 days vs. 48 days, P<0.001). Evaluation of the bone marrow at the time of death revealed ~2.5 fold decrease in the frequency of LSCs (P<0.01) and ~2 fold increase in the percentage of cycling LSCs (in SG2M) (P<0.001). Analysis of RNA-seq data from miR-99 KD LSCs revealed induction of a differentiated normal progenitor signature (P<0.001) and depletion of a shared HSC/LSC gene signature (P=0.05). Giemsa staining of peripheral blood showed miR-99 KD also induced a significant increase in the number of differentiated myeloid precursors in the peripheral blood (P<0.001), reminiscent of AML differentiation-inducing agents used in the clinic such as ATRA. Consistent with a role in regulating leukemic blast differentiation, microRNA-Seq data from the 153 AML patients in the TCGA database revealed that miR-99 expression inversely correlated with their French-American-British classifications, with low expression levels associated with M4 and M5 subtypes. Compatible with a role in maintaining LSCs, miR-99 KD in a primary AML sample reduced long-term engraftment upon xenotransplantation into NSG mice, and the engrafting cells displayed increased CD14 expression. Together, these data demonstrate that similar to normal HSPCs, miR-99 maintains LSCs function. As miR-99 functions to maintain both LSCs and HSCs, we asked which miR-99 target genes mediate miR-99 KD phenotypes. To address this question, we performed a shRNA library-based forward genetic screen designed to rescue the reduced HSC function following miR-99 KD. We designed 180 shRNAs against 45 predicted miR-99 targets that we identified as upregulated upon acute miR-99 KD in mouse HSPCs. Among the conserved miR-99 targets, Hoxa1, a member of the Hox family of transcription factors, was among the top hits, with all 4 shRNAs being enriched compared to controls. Ectopic expression of Hoxa1 in MonoMac6 AML cells was sufficient to induce differentiation, a phenotype similar to miR-99 KD. These data indicate that Hoxa1 is an important downstream mediator of miR-99 function. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-41-SCI-41
Author(s):  
Emmanuelle Passegué

Abstract SCI-41 Blood development is organized hierarchically, starting with a rare but well-defined population of hematopoietic stem cells (HSC) that give rise to a series of committed progenitors and mature cells with exclusive functional and immunophenotypic properties. HSC are the only cells within the hematopoietic system that self-renew for life, whereas other hematopoietic cells are short-lived and committed to the transient production of mature blood cells. Under steady-state conditions, HSC are a largely quiescent, slowly cycling cell population that, in response to environmental cues, is capable of dramatic expansion and contraction to ensure proper homeostatic replacement of all blood cells. While considerable work has deciphered the molecular networks controlling HSC activity, still little is known about how these mechanisms are integrated at the cellular level to ensure life-long maintenance of a functional HSC compartment. HSC reside in hypoxic niches in the bone marrow microenvironment, and are mostly kept quiescent in order to minimize stress and the potential for damage associated with cellular respiration and cell division. Recently, we have shown that HSC can also engage specialized response mechanisms that protect them from the killing effect of environmental stresses such as ionizing radiation (IR). We demonstrated that long-lived HSC, in contrast to short-lived myeloid progenitors, have enhanced expression of pro-survival members of the bcl2 gene family and robust induction of p53-mediated DNA damage response, which ensures their specific survival and repair following IR exposure. We reasoned that HSC have other unique protective features, which allow them to contend with a variety of cellular insults and damaged cellular components while maintaining their lifelong functionality and genomic integrity. We will present some of our recent findings on the fundamental mechanisms of stress-response that preserve HSC fitness during periods of metabolic stress, and allow for survival and repair following environmental stress associated with DNA damaging agents. It is now clear that oncogenic insults in diseases such as myeloproliferative neoplasms (MPN) can transform HSC and dramatically alter their biological functions leading to the emergence of leukemia-initiating stem cells (LSC), which are left untouched by most current therapies and can thereby mediate disease relapse. We will also discuss how transformed HSC may take advantage of some deregulated features of these normal stress-response mechanisms to escape therapeutic killing. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 796-796
Author(s):  
Benjamin Povinelli ◽  
Michael Nemeth

Abstract The molecular mechanisms that control the balance between quiescence and proliferation of hematopoietic stem and progenitor cells (HSPCs) are critical for maintaining life-long hematopoiesis. In a recent study (Povinelli, et al. Stem Cells, In Press, 2013) we demonstrated that the Wnt5a ligand inhibits HSPC proliferation through a functional interaction with a non-canonical Wnt ligand receptor termed Related to Receptor Tyrosine Kinase (Ryk). Expression of Ryk on HSPCs in vivo was associated with a decreased rate of proliferation. Following treatment with fluorouracil (5-FU), the percentage of Ryk+ HSPCs increased at the expense of Ryk-/low HSPCs. Based on these data, we hypothesized that one function of the Ryk receptor is to protect HSPCs from the effects of myeloablative agents. To test this hypothesis, we injected 6-8 week old C57BL/6 mice with 150 mg/kg of 5-FU and analyzed bone marrow 48 hours later for the presence of apoptotic HSPCs, defined as lineage negative (Lin-), Sca-1+, CD48- cells positive for active caspase-3. There was a 2.5-fold decrease in the percentage of apoptotic Ryk+ HSPCs (12.9 ± 1.7%) compared to Ryk-/low HSPCs (32.4 ± 5.3%, p < 0.001, n = 3). To test whether this effect was limited to 5-FU, we performed a similar study in which we irradiated C57BL/6 mice with 3 cGy of total body irradiation (TBI) and analyzed bone marrow 72 hours later for apoptotic HSPCs (for this experiment, defined by a Lin-, c-kit+, Sca-1+, CD150+, CD48- immunophenotype or LSK, SLAM). Comparable to the effects of 5-FU, there was a significant 3.0-fold reduction in the percentage of apoptotic Ryk+ HSPCs (3.1 ± 0.2%) compared to Ryk-/low HSPCs (9.2 ± 1.5%, p < 0. 001, n = 3) in mice receiving 3 cGy TBI. These results demonstrated an association between Ryk expression and survival of HSPCs following myeloablative injury. To determine whether in vivo targeting of the Ryk receptor would increase the sensitivity of HSPCs to myeloablative injury, we utilized a neutralizing rabbit anti-Ryk antibody (α-Ryk). We injected C57BL/6 mice with 5 mg/kg α-Ryk or rabbit IgG isotype for 2 consecutive days. Twenty-four hours after the second dose, we determined the frequency and cell cycle status of LSK SLAM cells. Treatment with α-Ryk significantly increased the percentage of LSK SLAM cells in the S/G2/M phases compared to control (α-Ryk: 17.8 ± 2.2%; isotype IgG: 11.6 ± 2.7%, p < 0.05, n = 3). This was associated with a decrease in the percentage of LSK, SLAM cells in G1 following treatment with α-Ryk (α-Ryk: 40.5 ± 3.2%, isotype IgG: 51.3 ± 2.2; p < 0.01, n = 3). The percentage of G0 LSK SLAM cells was unchanged (α-Ryk: 37.9 ± 2.6, isotype IgG: 35.7 ± 3.1% n = 3) indicating that inhibiting Ryk promoted the exit of LSK SLAM cells from G1. Treatment with α-Ryk also increased the percentage of whole bone marrow cells expressing the LSK SLAM phenotype by 1.4-fold compared to controls (p < 0.05, n = 3). To determine if α-Ryk treatment altered HSPC function, we transplanted whole bone marrow cells from C57BL/6 mice treated with two days of α-Ryk or isotype IgG at a 1:1 ratio with whole bone marrow from untreated Ubc-GFP transgenic mice into lethally irradiated B6.SJL mice. Four weeks after transplant, we analyzed peripheral blood cells for the percentage of CD45.2+ GFP- cells. There was no difference in engraftment by transplanted bone marrow cells from mice treated with α-Ryk or isotype IgG (α-Ryk: 61.6 ± 6.1% n = 4, isotype IgG: 52.8 ± 13.6%, n = 5), indicating that the neutralizing antibody does not inhibit short-term HSPC function on its own. We then tested whether blocking Ryk function resulted in greater sensitivity of HSPCs to 5-FU. We treated B6.SJL mice with 5 mg/kg α-Ryk or isotype IgG for 2 consecutive days, followed by 150 mg/kg of 5-FU. Forty-eight hours after 5-FU treatment, we transplanted 2x106 C57BL/6 whole bone marrow cells into treated B6.SJL mice without additional conditioning. Four weeks after transplant, we determined the percentage of donor-derived CD45.2+ peripheral blood cells. Treatment of recipient mice with α-Ryk prior to 5-FU treatment resulted in increased engraftment of donor bone marrow by 3.6-fold compared to isotype (p < 0.05, n = 5), suggesting that inhibition of Ryk resulted in increased elimination of host HSPCs by 5-FU. Collectively, these data suggest a model in which inhibition of the Ryk receptor results in increased proliferation of HSPCs, rendering them more sensitive to the effects of myeloablative agents such as chemotherapy or TBI. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2852-2852
Author(s):  
Lorena Lobo Figueiredo-Pontes ◽  
Robert S Welner ◽  
Yuta Mishima ◽  
Mihoko Yamamoto ◽  
Ann Mullally ◽  
...  

Abstract The treatment of myeloproliferative neoplasms (MPN) harboring JAK2V617F mutation remains non-curative with the current strategies despite the development of JAK2 inhibitors, which improve the symptoms of the disease but do not effectively reduce the allele burden of the mutation. In addition, it has been shown that, although JAK2 inhibitors can control the expansion of the myeloerythroid precursors that contribute to the clinical phenotype, they fail to eliminate the most primitive stem cells, which are responsible for the initiation of the disease. The differential expression of genes/proteins between the hematopoietic stem cells (HSC) and the more committed bone marrow progenitors may reveal, at least in part, the contribution of each cell type to the pathogenesis of the disease. We have shown that JAK2 inhibition induces down-regulation of the anti-apoptotic protein Bcl-xL and up-regulation of the pro-apoptotic BH3-only protein, Bim, in human cells harboring the JAK2V617F mutation, suggesting a key role of these Bcl-2 family proteins as potential targets for JAK2-mediated apoptosis. Therefore, we aimed to study the contribution of the Bcl-2 family proteins to MPNs by the use of a conditional JAK2V617F knock-in model, particularly focusing on MPN initiating cells. The heterozygous Jak2V617F expressing animals (Jak2+/VF) develop a lethal MPN characterized by an elevated hematocrit and splenomegaly due to extramedullary hematopoiesis, with a prominent expansion of early (Lin- CD71+ Ter119+) and late (Lin- CD71- Ter119+) erythroid cells in the spleen, and increased pre-megakaryocyte-erythrocyte (Lin- Sca1- cKIThi CD41- FcgRII/III- CD105- CD150+), megakaryocyte (Lin- Sca1- cKIThi CD41+ CD150+) and erythroid (Lin- Sca1- cKIThi CD41- FcgRII/III- CD105+ CD150+) precursors in the bone marrow. HSC numbers (Lin- Sca1- cKIThi CD105+ CD150+) are also increased in Jak2+/VF as compared to the Jak2+/+ controls. Gene expression analysis revealed that Bcl-xL was upregulated in sorted LSKs (Lin- Sca-1+ cKIThi) containing HSCs but not in the more committed progenitors (CMP, GMP, MEP). By contrast, the pro-apoptotic Bim was downregulated in CMPs and MEPs but not at the LSK cells containing HSCs. Expression of Bcl-2 showed no difference between Jak2+/VF and Jak2+/+ mice. These data suggest that signals from JAK2V617F mutation may be cell-stage specific, which may explain why JAK2 inhibitors fail to eliminate MPN initiating cells. Modulating the overexpression of Bcl2 antiapoptotic proteins at the MPN initiating cells level could potentially render these cells sensitive to the JAK2 inhibition. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document