scholarly journals Novel Therapeutic Strategies to Target Protein Quality Control Compartments in Multiple Myeloma

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3433-3433
Author(s):  
Mohamed A.Y. Abdel Malek ◽  
Sajjeev Jagannathan ◽  
Ehsan Malek ◽  
Nikhil Vad ◽  
Douaa M. Sayed ◽  
...  

Abstract Background: Precisely regulated quality control systems maintain protein homeostasis and cell viability. Cells have developed strategies to cope with defective proteins. Molecular chaperones refold aberrant proteins to restore their native conformation, but, if these proteins cannot be repaired, they are rapidly destroyed by the ubiquitin (Ub)+proteasome system (UPS). Functional blockade of the UPS leads to the accumulation of proteotoxic Ub-conjugates and has been exploited for therapeutic gain in multiple myeloma (MM) treatment. While the therapeutic benefit of proteasome inhibitors remains unchallenged, cancer cells adapt through the induction of alternate compensatory protein clearance mechanisms, e.g., aggresomes, autophagosomes to promote tumor survival, treatment failure and relapse, Here, we investigated the link between proteasome inhibition and formation of the newly discovered JUxtaNuclear Quality control compartments-JUNQ. These structures are spatially distinct from aggresomes and autophagosomes and contain Ub-conjugates, proteasomes, the heat shock protein (HSP)104 and other components. Here, we investigated the role of the molecular chaperone glucose-regulated protein (GRP78), which is required for ER integrity, on these compensatory protein clearance mechanisms. Methods: Myeloma cells were treated with the proteasome inhibitor bortezomib. Immunofluorescence staining, confocal microscopy and multi-level imaging detected the accumulation and co-localization of Ub-pathway substrates, proteasomes and the molecular chaperones GRP78 and HSP104. Highly specific dye-based methods were used to detect and quantitate aggresomes and autophagosomes in these cells and to determine the drug effects. The experiments were performed using drug naïve and drug-resistant MM cell lines as well as bone marrow-derived myeloma patient tumor samples. In addition, a highly specialized human embryonic kidney HEK-293 cell line was employed that expressed a green fluorescent reporter (GFPu) that was a Ub-proteasome system substrate. The GRP78-expressing gene HSPA5was silenced using siRNA in the HEK cells. Results: GRP78 has an obligatory role in autophagosome formation. HSPA5, which encodes GRP78, was silenced in HEK cells to determine the role of GRP78 on protein quality control compartments. GRP78-knockout cells were tretaed with bortezomib to induce aggresomes but autophagosome formation was significantly inhibited. Bortezomib treatment also promoted the accumulation of the GFPu substrate that co-localized with Ub, proteasomes and HSP104. Importantly, in GRP78-deficient cells, HSP104 was upregulated even in the absence of bortezomib. At early time points, the fluorescent intensity of the GFPu reporter co-localized with HSP104 and was much higher than that seen in the control cells. Also, Ub and proteasome levels were higher and co-localized with GFPu and HSP104, consistent with the formation of JUNQ compartments. However, at later time points, green fluorescent intensity was dispersed throughout the cytoplasm with minimal co-localization with HSP104 to suggest that in GRP78-deficient cells those compartments did not remain stable. The addition of bortezomib at physiologically-relevant concentrations (10nM) to myeloma cells and MM patient tumor cells led to the similar co-localization of HSP104 with Ub-conjugated proteins and proteasomes. Importantly, HSP104 levels and the intensity of HSP104 co-localization with proteasomes and Ub was much higher in myeloma cells resistant to each of proteasome inhibitors bortezomib, carfilzomib or ixazomib than that seen in drug-sensitive cells. Conclusions: Taken together, the results demonstrate that GRP78 suppression inhibits autophagosomes and destabilizes the formation of HSP104-containing structures that are consistent with JUNQ. Using myeloma as a clinically-relevant cancer model, we demonstrate that physiologically-relevant concentrations of an FDA-approved proteasome inhibitor induce these newly discovered protein quality control compartments. JUNQ may serve as the temporary storage site for Ub-proteins that cannot be folded or degraded. Genetic or pharmacologic inhibition of GRP78 may reduce JUNQ formation but does not inhibit aggresome formation with therapeutic potential to enhance the benefit of proteasome inhibition and to overcome drug resistance in MM. Disclosures No relevant conflicts of interest to declare.

Author(s):  
Xu Zhou ◽  
Xiongjin Chen ◽  
Tingting Hong ◽  
Miaoping Zhang ◽  
Yujie Cai ◽  
...  

AbstractThe tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.


Author(s):  
Yasmeena Akhter ◽  
Jahangir Nabi ◽  
Hinna Hamid ◽  
Nahida Tabassum ◽  
Faheem Hyder Pottoo ◽  
...  

Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.


Blood ◽  
2012 ◽  
Vol 119 (22) ◽  
pp. 5265-5275 ◽  
Author(s):  
Eugene Khandros ◽  
Christopher S. Thom ◽  
Janine D'Souza ◽  
Mitchell J. Weiss

Cells remove unstable polypeptides through protein quality-control (PQC) pathways such as ubiquitin-mediated proteolysis and autophagy. In the present study, we investigated how these pathways are used in β-thalassemia, a common hemoglobinopathy in which β-globin gene mutations cause the accumulation and precipitation of cytotoxic α-globin subunits. In β-thalassemic erythrocyte precursors, free α-globin was polyubiquitinated and degraded by the proteasome. These cells exhibited enhanced proteasome activity, and transcriptional profiling revealed coordinated induction of most proteasome subunits that was mediated by the stress-response transcription factor Nrf1. In isolated thalassemic cells, short-term proteasome inhibition blocked the degradation of free α-globin. In contrast, prolonged in vivo treatment of β-thalassemic mice with the proteasome inhibitor bortezomib did not enhance the accumulation of free α-globin. Rather, systemic proteasome inhibition activated compensatory proteotoxic stress-response mechanisms, including autophagy, which cooperated with ubiquitin-mediated proteolysis to degrade free α-globin in erythroid cells. Our findings show that multiple interregulated PQC responses degrade excess α-globin. Therefore, β-thalassemia fits into the broader framework of protein-aggregation disorders that use PQC pathways as cell-protective mechanisms.


2014 ◽  
Vol 204 (6) ◽  
pp. 869-879 ◽  
Author(s):  
Annamaria Ruggiano ◽  
Ombretta Foresti ◽  
Pedro Carvalho

Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1008951
Author(s):  
Rebecca Andersson ◽  
Anna Maria Eisele-Bürger ◽  
Sarah Hanzén ◽  
Katarina Vielfort ◽  
David Öling ◽  
...  

70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70’s in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this ‘defect’ of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2317
Author(s):  
Bianca J. J. M. Brundel

The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing and changes in lifestyle. Prevailing theories about the mechanisms of cardiac disease onset feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of the protein quality control as central factors. In the heart, loss of protein patency, due to flaws in design (genetically) or environmentally-induced wear and tear, may overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac disease onset.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1893-P
Author(s):  
GUOJUN SHI ◽  
XUYA PAN ◽  
HETING WANG ◽  
PETER ARVAN ◽  
LING QI

Sign in / Sign up

Export Citation Format

Share Document