scholarly journals Differential role of cytosolic Hsp70s in longevity assurance and protein quality control

PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1008951
Author(s):  
Rebecca Andersson ◽  
Anna Maria Eisele-Bürger ◽  
Sarah Hanzén ◽  
Katarina Vielfort ◽  
David Öling ◽  
...  

70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70’s in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this ‘defect’ of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast.

2020 ◽  
Author(s):  
Rebecca Andersson ◽  
Anna Maria Eisele-Bürger ◽  
Sarah Hanzén ◽  
Katarina Vielfort ◽  
David Öling ◽  
...  

ABSTRACT70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70’s in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this ‘defect’ of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast.AUTHOR SUMMARYAll organisms have proteins that network together to stabilize and protect the cell throughout its lifetime. One of these types of proteins are the Hsp70s (heat shock protein 70). Hsp70 proteins take part in folding other proteins to their functional form, untangling proteins from aggregates, organize aggregates inside the cell and ensure that damaged proteins are destroyed. In this study, we investigated three closely related Hsp70 proteins in yeast; Ssa1, 2 and 4, in an effort to describe the functional difference of Ssa4 compared to Ssa1 and 2 and to answer the question: What types of cellular stress protection are necessary to reach a normal lifespan? We show that Ssa4 can perform many of the same tasks as Ssa1 and 2, but Ssa4 doesn’t interact in the same manner as Ssa1 and 2 with other types of proteins. This leads to a delay in removing protein aggregates created after heat stress. Ssa4 also cannot ensure that misfolded proteins aggregate correctly inside the nucleus of the cell. However, this turns out not to be necessary for yeast cells to achieve a full lifespan, which shows us that as long as cells can prevent aggregates from forming in the first place, they can reach a full lifespan.


Author(s):  
Xu Zhou ◽  
Xiongjin Chen ◽  
Tingting Hong ◽  
Miaoping Zhang ◽  
Yujie Cai ◽  
...  

AbstractThe tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.


Author(s):  
Yasmeena Akhter ◽  
Jahangir Nabi ◽  
Hinna Hamid ◽  
Nahida Tabassum ◽  
Faheem Hyder Pottoo ◽  
...  

Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.


2020 ◽  
Vol 7 ◽  
Author(s):  
Margreet B. Koopman ◽  
Stefan G. D. Rüdiger

Alzheimer’s Disease is driven by protein aggregation and is characterized by accumulation of Tau protein into neurofibrillary tangles. In healthy neurons the cellular protein quality control is successfully in charge of protein folding, which raises the question to which extent this control is disturbed in disease. Here, we describe that brain cells in Alzheimer’s Disease show very specific derailment of the protein quality control network. We performed a meta-analysis on the Alzheimer’s Disease Proteome database, which provides a quantitative assessment of disease-related proteome changes in six brain regions in comparison to age-matched controls. We noted that levels of all paralogs of the conserved Hsp90 chaperone family are reduced, while most other chaperones – or their regulatory co-chaperones - do not change in disease. The notable exception is a select group consisting of the stress inducible HSP70, its nucleotide exchange factor BAG3 – which links the Hsp70 system to autophagy - and neuronal small heat shock proteins, which are upregulated in disease. They are all members of a cascade controlled in the stress response, channeling proteins towards a pathway of chaperone assisted selective autophagy. Together, our analysis reveals that in an Alzheimer’s brain, with exception of Hsp90, the players of the protein quality control are still present in full strength, even in brain regions most severely affected in disease. The specific upregulation of small heat shock proteins and HSP70:BAG3, ubiquitous in all brain areas analyzed, may represent a last, unsuccessful attempt to advert cell death.


2014 ◽  
Vol 204 (6) ◽  
pp. 869-879 ◽  
Author(s):  
Annamaria Ruggiano ◽  
Ombretta Foresti ◽  
Pedro Carvalho

Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2317
Author(s):  
Bianca J. J. M. Brundel

The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing and changes in lifestyle. Prevailing theories about the mechanisms of cardiac disease onset feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of the protein quality control as central factors. In the heart, loss of protein patency, due to flaws in design (genetically) or environmentally-induced wear and tear, may overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac disease onset.


Sign in / Sign up

Export Citation Format

Share Document